
Archive Inventory Management System (AIMS)

Rishi Verma
Technical Lead, Planetary Data System, Imaging Node
NASA Jet Propulsion Laboratory

© 2018 California Institute of Technology. Government sponsorship acknowledged

A fast, metrics gathering framework for validating and gaining 
insight from large file-based data archives

Planetary Data System, 
Imaging Node



jpl.nasa.gov

Agenda

The motivation and strategy

1

A live preview of the software’s results

A technical overview and performance benchmarking results

2

3



jpl.nasa.gov

Motivation
To more quickly answer archival related questions for PDS IMG stakeholders

PDS 
Image Node 
Data Archive 

Which folders contain (too many) 
millions of files?

What is the proportion of JPEGs to 
PNGs?

What is the balance of image files across our
RAID disks?

How many safed, extras, and 
staged images do we have?

Do we have duplicates?

Which images have labels with
missing metadata?

What are the largest files per mission / 
instrument? Which images are missing

thumbnail equivalents?

How is the migration from PDS3 to PDS4 labeled images
being reflected in our archive?



jpl.nasa.gov

Strategy
Catalog archival metadata for every asset in our archive, in parallel

PDS IMG Asset
(File / Directory)

Checksum 
(MD5)

Metadata 
within File 

Path

Mime Type

Size

Select 
PDS3 Label 
Metadata

Valid Unix 
Perms?

Safed? Old? 
Extra? 

Staged?

Mount Point



jpl.nasa.gov

Live Preview
(See APPENDIX A for screen-shots)



jpl.nasa.gov

Technical Overview
Data Flow

• Create full 
directory 
listing tree 
file

• Split into 
chunks for 
future 
repeatability

1. 
Crawl

• For each 
archive 
asset, extract 
metadata

• Run 
extraction in 
parallel for 
performance

2. 
Extract

• Post collected 
metadata to 
an indexer for 
post-
processing 
analytics

• Post metadata 
in parallel for 
performance

3. 
Catalog



jpl.nasa.gov

Technical Overview
Architecture

PDS IMG 
Data Archive

AIMS 
Extractor

Directory 
Tree Listing

…

Apache 
Spark

AIMS 
Extractor

AIMS 
Extractor

…

Elastic 
Search

Metadata

Metadata

Metadata

…

Software infrastructure Component

Data Product

Data Archive

Legend

Customized Software

Crawl Phase Extract Phase Catalog Phase

Unix find

Dashboard / 
queries

Reprocessing 
Query

~200 GB

Java program that takes a 
file path, and generates 

archival metadata

Parallelization via:
• 64 cores
• 43 GB RAM

Clustered
Elasticsearch with
16 nodes

Visualization, queries, and 
future reprocessing data 
source



jpl.nasa.gov

Technical Overview
Extract Phase Example (/mnt/data/mer/mer2no_0xxx/data/sol0045)

0

50

100

150

200

250

300

Baseline 16-cores (4n cluster) 32-cores (8n cluster) 64-cores (16n cluster) 32-cores (gpu1)

AIMS Met Extraction Time (secs) for 377 files

Processing time per cluster type

Baseline (serial processing): 4m 32 sec



jpl.nasa.gov

Technical Overview
Extract Phase Example (/mnt/pdsdata/)

0

5

10

15

20

25

30

35

8 nodes (32c) 16 nodes (64c) 32 nodes (128c) 64 nodes (256c) 128 nodes (512c)

AIMS Met Extraction Time (days)

Processing time per cluster type



jpl.nasa.gov

Technical Overview
Extract Phase Example (/mnt/data/mer/spirit)

0

2

4

6

8

10

12

14

16

18

20

4 nodes (16c) 5 nodes (20c) 6 nodes (24c) 7 nodes (28c) 8 nodes (32c) 16 nodes (64c)

AIMS Met Extraction Time

Processing time per cluster type



jpl.nasa.gov

Building Blocks for Future Needs
(Un-) Anticipated Applications into Future Years

Continuous 
Archive Health 
Assessment 

Eco-system of 
Downstream 
Applications 

Measuring 
Migration / 
Evolution of 

Label Metadata

Framework for 
Scalable Processing / 

Transformation of 
File Assets

Support for Peer 
Archives – Packaging 

AIMS into an Open 
Source Solution

Trialing 
Metadata for 
Image Assets



jpl.nasa.gov

Contact & Credits
E-mail Me: Rishi.Verma@jpl.nasa.gov

Thank you:
• Jordan Padams (for original idea and inspiration)
• Gabriel Montemayor (initial AIMS concept development)
• Kevin Grimes and PDS IMG development team (feedback)
• Paul Ramirez (ideation and feedback on strategy)
• Sujen Shah (ideation and feedback on technical approach)



jpl.nasa.gov



jpl.nasa.gov

Appendix A



jpl.nasa.gov

Dashboard of archival metadata visualizations



jpl.nasa.gov

Dashboard of archival metadata visualizations: filtered to just Messenger assets



jpl.nasa.gov

Visualization to view duplicates in archive



jpl.nasa.gov

Viewing which file paths have been duplicated with a specific MD5 checksum value



jpl.nasa.gov

Generating the total disk usage of all duplicated files with a specific MD5 checksum



jpl.nasa.gov

Searching paths for a regular expression: how many RDRs do we have for MER? 



jpl.nasa.gov

Appendix B



jpl.nasa.gov

How Do You Build Your Own AIMS?

Procure Compute Infrastructure
• Set up a cluster of at least five machines to help distribute your AIMS 

metadata extraction work.
• Local clusters have data transfer advantages, but remote cloud (AWS) 

systems have cost advantages. If time is a premium, set up a local 
system, but if cost is a premium, leverage a cloud provider

Deploy AIMS Infrastructure onto Compute Infrastructure
• Apache Spark v 2.2.0+ is sufficient (https://spark.apache.org)
• Elasticsearch v 6.2.2+ sufficient 

(https://www.elastic.co/products/elasticsearch)
• Kibana v 6.2.2+ sufficient (https://www.elastic.co/products/kibana)
• Ensure Unix tools like find, split, head, tails, shuffle, are present for 

crawling and verifying data

1

2

https://spark.apache.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana


jpl.nasa.gov

How Do You Build Your Own AIMS?

Design and Build an AIMS Extractor
• Based on #4 queries, create a Java / Scala / Python extractor program 

built on the Apache Spark API kit, to extract metadata from a given file 
(https://spark.apache.org/docs/latest/quick-start.html)

• Ensure you are leveraging Spark’s textFile, or binaryFile, method to 
perform processing per file

• Leverage Elasticsearch’s Java RESTful API, to post extracted metadata 
to Elasticsearch cluster

Define the Questions you have for your Archive
• Clearly articulate the types of queries, statistics, and measurements 

you want to collect from your archive

4

3

https://spark.apache.org/docs/latest/quick-start.html


jpl.nasa.gov

How Do You Build Your Own AIMS?

Run AIMS Processing Job Against your Archive
• Use Unix find to build a directory tree of your archive. Leverage Unix 

parallel or multiple machines to speed the crawling task
• If your directory tree file is very large, split it to ensure faster 

reprocessing if needed
• Run your AIMS Extractor as a Spark job, ensuring that attributes like 

the following are set:
• --executor-cores <USE MAX CORES AVAILABLE>
• --executor-memory <USE 90% MEM, NOT ALL>
• Within your AIMS extractor code (textFile, binaryFile), set default 

min partitions to the number of nodes X cores you have available. 
You may experiment with this for faster processing

5


