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» Background and System Concept
= Qverview of the Proposed Mars Regional Navigation Satellite System (MRNSS)
= Importance of Accurate Navigation Orbit Determination (OD)
= Challenges of Deep Space Tracking/Navigation for Multiple Spacecraft

- Simultaneous 2-Way Doppler/Ranging
= System Approach: A Collaborative Flight-Ground Architecture
= Different Doppler and Doppler Rate of Mars Assets
= Flight Radio Upgrade: Smart Sweeping Algorithm
= Tracking Performance Simulation

»  Conclusion



& GAIAA.

Shaping the Future of Aerospace

Part 1. Background and System Concept



*  We have been working on the system concept of a low-cost low-maintenance Mars
Regional Navigation Satellite System (MRNSS) [1] with the following key principles

= (Capitalize on the build-up of orbiting and surface infrastructures on Mars during the
human Mars exploration era [2][3][4]

= Leverage on a new geometric trilateration method that simultaneously performs
absolute positioning and relative positioning [5][6]

= Introduce the concept of using relative positioning that provides regional navigation
services in the vicinity of a human Mars landing site (~100 km), thereby relieving the
stringent requirements on orbit determination (OD) of Mars navigation satellites
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“error-canceling” node
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Simultaneous Doppler/ranging of orbiters
within the ground antenna beamwidth [6]

“Differencing” of raw range Mars landing site
measurements to obtain
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positioning [4][5]
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Orbits of the Notional Mars Navigation Nodes (3-D View)

Utopia Planitia: 182.5° due East, 46.7° due North
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Orbits of the Notional Mars Navigation Nodes Projected on Mars Surface (3-D View)
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Traditional deep space tracking techniques include Doppler, ranging, and Delta
Differential One-Way Ranging (ADOR)

2-Way Doppler/ranging requires tight coordination between ground and flight
(Doppler compensation), and one ground station tracking one spacecraft (1-to-1)

ADOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)

Tracking requires tying up an antenna for a long time [7]. When number of
missions increase, and for missions with multiple spacecraft, there might not be
enough DSN antenna assets to meet missions’ communications and tracking needs

There is a desire to extend the current deep space tracking techniques to support
multiple spacecraft in a beam to improve the antenna usage efficiency
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Part 2: 2-Way Simultaneous Doppler/Ranging
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» Assume Doppler/ranging in X-band, which supports low rate commands/telemetry
*  The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna

* For N orbiters, the downlinks operate in N allocated frequency bands separated by
N-1 guard bands to prevent interference

* Collaborative flight-ground architecture:
* The N orbiters time-share a single uplink; commands differentiated by SCID
* The ground “Doppler-compensates” the uplink signal in either way:
— With respective to the Mars center
— With respective to the average (centroid) of Doppler’s of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler.
Preliminary simulations: residual Doppler and Doppler rate are bounded by 45 KHz
& 2.6 Hz/s 11
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*  Flight radio upgrades:

= Adifferent turn-around-ratio for each spacecraft so the same uplink would be
coherently “turned-around” to modulate the telemetry and ranging signals on a
different allocated downlink frequency

= A well-designed tracking loop that can sweep, acquire, and track the unknown uplink
carrier phase and high residual Doppler frequency

* Ground upgrades (not discussed in this paper):

* One ground antenna receives all N downlink signals with different carrier frequencies
via Multiple Spacecraft Per Aperture (MSPA)

* Each signal stream is extracted via band-pass filtering and down-converted to IF for
telemetry, Doppler, and range processing

12
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Doppler rate relative to Earth (Hz/s)
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Maximum Doppler Shift Difference: Mars center to Earth
x 10° Xmt Frequency = 8.4 GHz;

UtopiaPlanitia Aerods Aero6s Aero90 Mars48hr

Maximum Doppler Rate Difference: Mars center to Earth
Xmt Frequency = 8.4 GHz;
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UtopiaFlanitia Aerods Aero68 Aero90 Mars48hr




(Hz/s)

Maximum Doppler Shift Difference: Assets Average to Earth
Xmt Frequency = 8.4 GHz;

Aeroibsd Aero9o0 Mars48hr

UtopiaPlanitia Aero45

Maximum Doppler Rate Difference: Assets Average to Earth
Xmt Frequency = 8.4 GHz;

Mars48hr
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Uniqueness:
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We describe a collaborative flight-ground architecture that performs two-way Doppler and
ranging for navigation tracking for multiple orbiting spacecraft at Mars

This scheme does not require any changes to the current DSN ground signal
processing, and only needs multiple copies of the Receiver Ranging Processors
(RRPs) at the ground station

We introduce a smart frequency sweeping algorithm that acquires and tracks the
more dynamic uplink signals experienced by each spacecraft

We illustrate the application of this scheme to support simultaneous OD for the
Mars orbiters of a notional Mars Regional Navigation Satellite System (MRNSS)

This scheme is extensible to the Lunar scenarios ,
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