
Simultaneous Two-Way Doppler and Ranging for 

Multiple Spacecraft at Mars: Flight Radio Tracking 

System Design and Performance Simulations 

Kar-Ming Cheung Dariush Divsalar

Jet Propulsion Laboratory, Caltech

SpaceOps 2018, May 28 – June 1, 2018

Marseille, France

© 2018 California Institute of Technology.  Government sponsorship acknowledged. 



Outline

• Background and System Concept

▪ Overview of the Proposed Mars Regional Navigation Satellite System (MRNSS)

▪ Importance of Accurate Navigation Orbit Determination (OD)

▪ Challenges of Deep Space Tracking/Navigation for Multiple Spacecraft

• Simultaneous 2-Way Doppler/Ranging

▪ System Approach: A Collaborative Flight-Ground Architecture

▪ Different Doppler and Doppler Rate of Mars Assets

▪ Flight Radio Upgrade: Smart Sweeping Algorithm

▪ Tracking Performance Simulation

• Conclusion

2



Part 1: Background and System Concept
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Proposed Mars Regional Navigation Satellite System (1)

• We have been working on the system concept of a low-cost low-maintenance Mars 
Regional Navigation Satellite System (MRNSS) [1] with the following key principles

▪ Capitalize on the build-up of orbiting and surface infrastructures on Mars during the 
human Mars exploration era [2][3][4]

▪ Leverage on a new geometric trilateration method that simultaneously performs 
absolute positioning and relative positioning [5][6]

▪ Introduce the concept of using relative positioning that provides regional navigation 
services in the vicinity of a human Mars landing site (~100 km), thereby relieving the 
stringent requirements on orbit determination (OD) of Mars navigation satellites
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Proposed Mars Regional Navigation Satellite System (2)
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Proposed Mars Regional Navigation Satellite System (3)
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Orbits of the Notional Mars Navigation Nodes (3-D View)
Utopia Planitia:   182.5

o
 due East, 46.7

o
 due North 

Aerostationary orbiter 1 (Areo45):  162.5
o
 due East 

Aerostationary orbiter 2 (Areo90):  207.5
o
 due East 

Aerosynchronous orbiter (Areo68): 180
o
 due East and 20

o
 inclined 

Deep Space Habitat (Mars48hr):  180
o
 due East, 149.5

o
 inclined 

	



Proposed Mars Regional Navigation Satellite System (4)
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Orbits of the Notional Mars Navigation Nodes Projected on Mars Surface (3-D View)



Importance of Accurate Navigation Satellites Orbit Determination
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Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	
0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	

P
se
u
d
o
-r
an
ge
	

er
ro
r	

0	cm	 0.00	 3273.85	 6547.69	 13095.39	 32738.48	 65476.99	 196431.3	 229169.9	

0.10	cm	 11.27	 3273.70	 6547.54	 13095.23	 32738.32	 65476.82	 196431.1	 229169.7	
0.25	cm	 28.19	 3273.56	 6547.35	 13095.01	 32738.08	 65476.58	 196430.9	 229169.5	

0.50	cm	 56.37	 3273.51	 6547.12	 13094.69	 32737.71	 65476.19	 196430.5	 229169.1	

1.00	cm	 112.74	 3274.15	 6547.03	 13094.24	 32737.04	 65475.45	 196429.7	 229168.3	
2.00	cm	 225.48	 3278.35	 6548.30	 13094.06	 32735.98	 65474.10	 196428.1	 229166.7	

5.00	cm	 563.71	 3313.95	 6563.76	 13099.34	 32735.15	 65471.23	 196423.9	 229162.4	

Table	1.	s3D	Absolute	Localization	Error	standard	deviation	(cm)	of	the	New	Scheme.	PDOP=113.17.	
	
	

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 14.43	 21.57	 35.07	 65.44	 160.06	 319.04	 956.04	 1115.33	
0.10	cm	 21.59	 26.82	 38.47	 67.27	 160.75	 319.32	 956.05	 1115.32	

0.25	cm	 42.77	 45.58	 53.22	 76.58	 164.76	 321.27	 956.58	 1115.75	

0.50	cm	 81.89	 83.33	 87.69	 103.45	 178.67	 328.48	 958.82	 1117.63	
1.00	cm	 161.95	 162.62	 164.84	 173.62	 226.38	 356.41	 968.34	 1125.72	

2.00	cm	 323.00	 323.28	 324.34	 328.78	 359.12	 452.05	 1006.71	 1158.71	

5.00	cm	 806.95	 806.99	 807.34	 808.99	 821.36	 865.36	 1246.30	 1371.59	

Table	2.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	100	km.	Sigma	=	100	m.	Delta	=	100	m.	

	
	

Our	Proposed	
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GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 0.14	 1.59	 3.18	 6.35	 15.87	 31.73	 95.20	 111.07	

0.10	cm	 16.03	 16.10	 16.32	 17.20	 22.47	 35.45	 96.42	 112.10	
0.25	cm	 40.08	 40.10	 40.18	 40.53	 42.99	 50.93	 103.02	 117.79	

0.50	cm	 80.15	 80.16	 80.19	 80.36	 81.59	 85.99	 123.99	 136.48	

1.00	cm	 160.31	 160.30	 160.32	 160.39	 160.97	 163.19	 185.83	 194.34	
2.00	cm	 320.62	 320.61	 320.61	 320.63	 320.89	 321.95	 333.77	 338.52	

5.00	cm	 801.54	 801.53	 801.52	 801.52	 801.58	 801.93	 806.47	 808.38	

Table	3.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	10	km.	Sigma	=	100	m.	Delta	=	100	m.	

	

200 – 400 folds 

improvement

in RMSE 
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Sigma: media delay

Delta: clock bias



Challenges of Deep Space Tracking/Navigation for Multiple SC

• Traditional deep space tracking techniques include Doppler, ranging, and Delta 
Differential One-Way Ranging  (DDOR)

• 2-Way Doppler/ranging requires tight coordination between ground and flight 
(Doppler compensation), and one ground station tracking one spacecraft (1-to-1)

• DDOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)

• Tracking requires tying up an antenna for a long time [7].  When number of 
missions increase, and for missions with multiple spacecraft, there might not be 
enough DSN antenna assets to meet missions’ communications and tracking needs

• There is a desire to extend the current deep space tracking techniques to support 
multiple spacecraft in a beam to improve the antenna usage efficiency
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Part 2: 2-Way Simultaneous Doppler/Ranging
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A Collaborative Flight-Ground Architecture (1)

• Assume Doppler/ranging in X-band, which supports low rate commands/telemetry

• The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna

• For N orbiters, the downlinks operate in N allocated frequency bands separated by 
N-1 guard bands to prevent interference

• Collaborative flight-ground architecture: 

• The N orbiters time-share a single uplink; commands differentiated by SCID

• The ground “Doppler-compensates” the uplink signal in either way:

– With respective to the Mars center

– With respective to the average (centroid) of Doppler’s of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler.  
Preliminary simulations: residual Doppler and Doppler rate are bounded  by 45 KHz
& 2.6 Hz/s 11



A Collaborative Flight-Ground Architecture (2)

• Flight radio upgrades:

▪ A different turn-around-ratio for each spacecraft so the same uplink would be 
coherently “turned-around” to modulate the telemetry and ranging signals on a 
different allocated downlink frequency

▪ A well-designed tracking loop that can sweep, acquire, and track the unknown uplink 
carrier phase and high residual Doppler frequency

• Ground upgrades (not discussed in this paper): 

• One ground antenna receives all N downlink signals with different carrier frequencies 
via Multiple Spacecraft Per Aperture (MSPA)

• Each signal stream is extracted via band-pass filtering and down-converted to IF for 
telemetry, Doppler, and range processing
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Doppler and Doppler Rate Profiles
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Doppler and Doppler Rate Residuals for Mars Center Strategy
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Doppler and Doppler Rate Residuals for Frequency Centroid Strategy
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Spacecraft Radio Schematics
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Flight Radio Smart Frequency Frequency Algorithm

Th1

P

time

Th2

Th3

Dynamic sweeping circuit

P > Th1

f=f + q fstep2

f > f2set f=f1

Initialize sweep  freq., set  initial freq. f1, final freq. f2.

step freq. fstep1, fstep2 ,fstep3 , and thresholds Th1 ,Th2 ,Th3

Input sample P from

Lock Detector

no

yes
no

Increment 

freq. by fstep1

P > Th2

f=f+ q fstep3

yes

yes

no

q

Input sample q from

Sweeping Direction 

Detector q=Sign(fRX-fPLL)

Uniqueness:  

• It uses multiple thresholds and changes 
the frequency step size when the signal P 
is greater than a threshold

• It detects whether the received Doppler 
frequency is greater than the estimated 
Doppler frequency by PLL (q=+1) or is 
lower (q=-1) to determine the sweeping 
direction – either increase or decrease the 
sweeping frequency
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Lock Detection Signal P During Frequency Acquisition/Tracking 
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Difference between Doppler and Estimated Doppler 
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Time Profiles of Doppler and Estimated Doppler 



Conclusion

• We describe a collaborative flight-ground architecture that performs two-way Doppler and 

ranging for navigation tracking for multiple orbiting spacecraft at Mars

• This scheme does not require any changes to the current DSN ground signal 
processing, and only needs multiple copies of the Receiver Ranging Processors 
(RRPs) at the ground station

• We introduce a smart frequency sweeping algorithm that acquires and tracks the 
more dynamic uplink signals experienced by each spacecraft

• We illustrate the application of this scheme to support simultaneous OD for the 
Mars orbiters of a notional Mars Regional Navigation Satellite System (MRNSS)

• This scheme is extensible to the Lunar scenarios
21
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