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1. Surface Water Ocean Topography mission
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• Launch scheduled 2021
• Altitude ~890km; inclination 

77.6°; ~21 day repeat orbit
• Primary mission

– Measure sub-mesoscale 
(~10km resolution) ocean 
dynamic topography

– Measure height of inland 
water bodies; lakes 
250x250m2, rivers 50-100m 
wide

1. Surface Water Ocean Topography mission
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• Secondary mission objectives 
(i.e., within scope of mission 
design but don’t drive mission 
requirements):
– Sea ice freeboard/thickness
– Ice sheet surface topography
– Ocean tides
– Ocean bathymetry
– Tropical cyclone intensification
– Sea level change

1. Surface Water Ocean Topography mission
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Ka-band Radar Interferometer 
(KARIN):
• 35.75GHz central frequency
• Bandwidth 200MHz (75cm free 

space range resolution)
• 5m antennas separated by 

10m boom across-track
• Look angles ~0.6°–4.0°, two 

swaths 10–60km either side of 
nadir

1. Surface Water Ocean Topography mission
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1. Surface Water Ocean Topography mission
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Ka-band Radar Interferometer 
(KARIN):
• Resolution:

– Azimuth: 5m
– Range: ~60m (near-range) to 

~10m (far-range)
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• Phase difference due to different path 
delay to each antenna:

1. Surface Water Ocean Topography mission
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• And the height is
h = H � r1 cos ✓
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2. SWOT in the ice-covered oceans
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Questions:

1. What are the Ka-band backscatter 
properties of sea ice and leads at 
small look angles?

2. Given this, what height retrieval 
performance can we expect?

2. SWOT in the ice-covered oceans
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What might we expect to see?
• Leads:

– Specular (mirror-like) near nadir
– Ka-band highly sensitive to 

surface roughness (wavelength 
~8mm)

• Sea ice:
– ??

2. SWOT in the ice-covered oceans: Ka-band backscatter
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• Use data from AltiKa to 
constrain nadir backscatter

• Separate returns from 
leads/sea ice using

– Pulse peakiness; 𝝈0

– AMSR-2 sea ice concentration

• Look at 𝝈0 histograms for 
leads/sea ice during 
northern/southern hemisphere 
growth season

2. SWOT in the ice-covered oceans: Ka-band backscatter
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Northern hemisphere
• Sea ice 𝝈0~10–12 dB (50th percentile)
• Leads 𝝈0~18–20 dB (50th percentile)
• Nadir backscatter fairly stable during 

the growth season

2. SWOT in the ice-covered oceans: Ka-band backscatter
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Southern hemisphere
• Sea ice 𝝈0~12 dB (50th percentile)
• Leads 𝝈0~20–22 dB (50th percentile)
• Nadir backscatter fairly stable during 

the growth season

2. SWOT in the ice-covered oceans: Ka-band backscatter
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• Use Ka-band phased array 
precipitation radar onboard the 
Global Precipitation 
Measurement observatory

• 25 beams spanning ±9°
• Covers up to 65°N/S
• Combine with daily AMSR sea 

ice concentration to look at 
backscatter as a function of 
angle and ice concentration

2. SWOT in the ice-covered oceans: Ka-band backscatter
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• Marginal Ice Zone (MIZ) condition; sea ice concentration 15-55%
– Water areas to dominate backscatter; dominated open ocean type scattering
– Some evidence of specular backscatter as well, more so in northern hemisphere

2. SWOT in the ice-covered oceans: Ka-band backscatter
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• Consolidated ice pack; sea ice concentration >99%
– Faster drop off in 𝝈0 than open ocea
– Decent match with AltiKa at nadir

2. SWOT in the ice-covered oceans: Ka-band backscatter
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Limitations of GPM KaPR:
• Latitudinal coverage

– Only captures low-latitude 
sea ice

– Surface melt
– Fairly thin, flat, first year 

ice
• Footprint ~5km

– Specular open water 
might be swamped by ice

2. SWOT in the ice-covered oceans: Ka-band backscatter
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Airborne data?
• GLISTIN
• AirSWOT

2. SWOT in the ice-covered oceans: Ka-band backscatter
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Questions:

1. What are the Ka-band backscatter 
properties of sea ice and leads at 
small look angles?

2. Given this, what height retrieval 
performance can we expect?

2. SWOT in the ice-covered oceans
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• Adapt the SWOT Hydrology 
Simulator

• Simulates expected SWOT 
performance

• Produces L1b products based 
on

– SWOT projected orbit
– SWOT radar parameters
– An input elevation model
– Surface type mask
– Profiles of backscatter with angle 

for each surface type

2. SWOT in the ice-covered oceans: simulated retrievals
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2. SWOT in the ice-covered oceans: simulated retrievals
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• Height uncertainty increases 
across the swath due to

– Decreasing 𝝈0

– Antenna pattern
– Phase uncertainty increases 

linearly with look angle

2. SWOT in the ice-covered oceans: simulated retrievals
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• Height uncertainty increases 
across the swath due to

– Decreasing 𝝈0

– Antenna pattern
– Phase uncertainty increases 

linearly with look angle

• Number of pixels to average 
a function of look angle

– Specular water average ~1–2 
km2 (3cm precision)

– Sea ice ~10–40 km2 (3cm 
precision)
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2. SWOT in the ice-covered oceans: simulated retrievals

December 14, 2018 AGU Fall Meeting 2018, Washington D.C.



j p l . n a s a . g o v

3. SWOT: Science in the ice-covered oceans
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What might SWOT deliver 
beyond nadir altimetry?
• Two-dimensional ice 

thickness
• Swath provides much better 

coverage/faster repeat
• Two-dimensional currents, 

particularly interesting in MIZ, 
eddy-ice dynamics

• Synergies: CS-2/IS-2/NISAR

3. SWOT: Science in the ice-covered oceans
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www.seaice.dk
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