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& iaiironion tateraery What'’s in an Image?

measured Incoherent Light Starlight: Starlight:
intensity (exoplanets, disks, background) ReaI{E} Imaginary{E} 2

(JPL HCIT Iab image) Image Credit:
Brian Kern & Eric Cady

W_/

1) Science: How to extract 2) Engineering: How to estimate
exoplanets & disk signals? stellar E-field (to then control it).

2 Estimation Problems:

It can be the same question!

—> Coherent Differential Imaging (CDI)




& o1 bronuion aporatory Stellar E-field Estimation

Initial PSF

Why aren’t we using CDI already?

For control, to estimate stellar
E-field from intensity image:

We use phase diversity with DMs:

ADM Voltages for Probe 1 PSF for Probe 1

)

(10 nm P-V surface) But more light means...

[STScl HiCAT data] > More shot noise



@ canamamennns aromaony NOIS€ Comparison for Differential Imaging

Reference (RDl) Subtract off starlight template built from PSF library.

Angular (ADI) Roll telescope/sky. Subtract non-rotating stellar speckles.

> RDI and ADI are more efficient if we are shot noise limited.

» But we aren’t!
We are speckle
stability limited.

%

Soummer 2012 Pueyo 2016

Solution: Wavefront Correction Differential Imaging (WCDI):

 Modulate and suppress starlight while estimating science targets and starlight.
e How?

» Kalman filtering :
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& iaiironion tateraery Kalman Filtering

Previous :rf'wo:s Optical Covadrlaimce of New I\/.Ieasurem.ent
Estimate S |rr.1a e Model Mo g Error Images Noise vaanance
Covariance (estimated) (estimated)
New Optimal Estimate
> Provides faster correction
» Uses all prior information
Kalman JBE 1960 . o N
Groff & Kasdin JOSA-A 2013 >Opt|mally* filters out noise
Riggs et al. JATIS 2016 *optimal for Gaussian noise and linear processes 8

See also Sun et al., “Identification of the focal plane wavefront control system using E-M algorithm” Proc. SPIE, 2017.
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4. WCDI Lab Demo
5. WCDI Simulation for WFIRST CGI
6. Next Steps



@ carema nanseaeomoey  Planet Extraction in Princeton’s HCIL

Faint pseudo-planet injected into testbed
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CDI and WCDI in Princeton’s HCIL

* Planet-like signal injected into the testbed with laser
* 4 trials at different planet contrasts

Scaled Template PSF:

CDI Estimate
(not recursive):

WCDI Estimate
(recursive):

True Planet Contrast (x 107):

Corrected Iteration 1

- 5
¢ (/D)

Planet is in right-

|
w

|
IS

ontrast)

| | |
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side dark hole

log;o(c

Riggs et al.,
JATIS 2016

» Planet is found using wavefront correction images! .
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@ ieropusontaroy Statistical Analysis of WCDI in Simulation

e Monte Carlo WFSC simulations:

* Simple, static optical model of CGl’s SPC
— Photon shot noise only

e 100 trials with & without faint planet

* Low flux: 1 photon/image/pixel (at planet peak)
e Compare detection statistics.

Exoplanet PSF FWHM (Linear Scale)

|

)\O/D

e 11 pixels within FWHM

AO/D

13



& o1 bronuion aporatory ROC and AUC Curves

Case with 3e-10 Contrast Exoplanet

(~3x below residual starlight)

Receiver Operator Characteristic AUC=1 means perfect
(ROC) Curve: classification of signals
I 6 ' r
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@ rmimmiaemey . ROC and AUC Curves: Case 2

Case with 1e-10 Contrast Exoplanet

(~10x below residual starlight)

WCDI ROC Curves Area Under the ROC Curve
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Next Steps for WCDI
* For WFIRST CGlI: Compare performance directly to chopping schemes with
ADI and RDI.

e Simulate performance of WCDI with ground and future space
telescopes.

16



@ urmmeaemy Dynamic Speckles at Keck NIRC2

Pointing angle changes the primary mirror segment alignment
-> Speckles appear!

High Elevation (Regular PSF) Low Elevation

New bright speckles
X gt

S

o

(companion)

NIRC2 Images from Garreth Ruane

* Need on-sky WFSC to suppress new speckles from slewing or thermal drift
* True for ground- and space-based segmented telescopes (e.g., LUVOIR)

» Use WCDI as alternative to RDI and ADI when limited by
speckle stability.
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 Wavefront Correction Differential Imaging (WCDI)

— Enables science during wavefront correction
* Can improve WFIRST CGl science if slews/rolls affect contrast
— Possible game-changer for ground- and space-based imaging,
especially for segmented apertures

19
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& o1 bronuion aporatory Wavefront Correction: AO

Correct phase aberrations from atmospheric turbulence and imperfect optical surfaces

Light From
Telescope

Adaptive * Distorted
Mirror ' Wavefront
Adaptive Optics (AO):

-
msplitter 1. Measure phase errors with wavefront
orected sensor (WFS)
4 ' 2. Apply opposite shape on DM
GO
High-resolution

Wavefront Camera
Sensor

mage Credt CTAG Summer Schocl Main issues for high-contrast imaging:

Control
System

°* Aberrations after WFS not sensed and
corrected

* AO corrects only phase errors

» Can reach only =10 contrast 21
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& o1 bronuion aporatory Kalman Filter (KF)

* BPE ignores previous estimates
* KF optimally combines previous data with new measurements

* KF essentially averages out noise over many correction

iterations e mmmm——————————————— .
Controller Estimator

T = state
T = state estimate

21 = measurement

ug, = control vector U

Telescope Deformable Science
Mirrors Camera

Kalman Filter Equations
C%k:(_) — 3AU(+)I<:—1 + Tup—1 Model-based updates of
Pk:(_) — Pk—l (_|_) + Qk—l state x & state covariance P Q and R

T T _ Kalman gain: Balances model are tuning
Ky = Pk’(_)Hk: [Hkpk(_)Hk + Rk] ! } error and measurement error values
C%k:("') — 'fjk(_) + K [Zk? - Hk‘aek(_)] Measurement-based

Pk:(‘|‘) — []1 _ Kka,]Pk,(—) updates of x & P 22
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& soipropusiontavoratery Pair-wise Probing

* Subtract +/- probed images to isolate cross term between probe signal and

unknown stellar E-field Give'on+ 2007
Alj 1 Ri{pk,1} T{pr,1} Nk,1
. _ 4 . . {R{Ek}] n
: ' I{Ex}
Al N, Ripk.N,, }  Z{pk.N,,} Nk, Npp
\ ) \ Y A ~ _J
=2, =H, =Xy k = Correction iteration #
Measured Model-based Unknown j = Probe #

pk,; = Gku; = probe field at camera
= 2L = Hk Tl + N I}, ; = Measured intensity
Iinco = Incoherent intensity

nk, j+ = Measurement noise: shot,

Linear Least Squares Starlight Estimate:

readout, dark current

Batch Process Estimator (BPE)

Tp = (Hng)_ngzk

4 . \* WHFS gives us the incoherent signal for free
Incoherent estimate: * Coherent differential imaging (CDI)
Linco = Imeas — | Estar|”  Real-time image processing

\\ )+ Exoplanets are in the incoherent signal! 23




Estimate light at each pixel separately

* Take images for +/- probe shapes on DM:

Ik;,j:l: — ’Ek: ipk,jP + Iz’nco,k; + Nk, j+
= |Ex|” + |pr,;PE2R{E}pr,j} + Linco,k + N jt

Subtract +/- probed images to isolate cross term (heterodyne gain)

Al ;= Iy jy — I j— = AR{E;pr j} + Nk j

Jet Propulsion Lab " 1 l
@ ot pronusiontavoratery Pair-wise Probing

k = Correction iteration #

j = Probe #
Pk j = Gkuj = probe field at camera
I}, ; = Measured intensity
I;nco = Incoherent intensity

Nk j+ = Measurement noise: shot,

readout, dark current

=4 [R{pr;} T{pr,}] [I{Ek}] + [114]

At least 2 probes (since 2 unknowns)

AI].CJ R{pk,l} I{pk,l}
[ ; ]:4[ ; ; ] [R{Ek}]+
: ' ' I{Ex}
Alin, ) (Rlew,) T, )]
—_—  S——— ——
= Zy = Hy =Xy
Measured Model-based Unknown

— 2p = Hipxp 4+ ng

"

Lnk,NppJ Give’on+ 2007

Least Squares Estimate:

s (T —1gT
Batch Process Estimator (BPE)| “F — (Hy He)” Hp 2 |
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Pair-wise Probing Error Analysis

* Pair-wise probing is efficient

— Brighter probes = higher homodyne gain = approaches fundamental
shot noise limit

Noise Equivalent Contrast (NEC) = contrast resolution level from estimation

1 Z + D.+ N.,,o2
NEC — — — (1 X -+ ‘|’2 paron)
Foxtiot D
gf_l ~—

Fundamental
shot noise limit

Measurement noise
over
probe intensity

Fyr = Stellar flux
tior = Total exposure time for probed images
p? = Probe intensity

Nezp = # of exposures per image

2
ron

Z = Background light
Do = Dark current signal

o2 = Read noise variance

Example: For p? >> E?, if expose long enough to get (on average) 1 photon
— at 108 contrast, you can estimate down to 108 contrast.

e Estimate accuracy set by:

— Nonlinearities

— Model error (of DM & optical system)

Groff, Riggs, et al. 2015
25
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* BPE ignores previous estimates

The Kalman Filter (KF)

» KF optimally combines previous estimate with new measurements using

models of system and noise

> Provides faster correction and more robustness to measurement noise

~

[Kalman Filter Equations (per pixel)
k(=) = 2(+)k—1 + Tug—1

Pi(—=) = Pe—1(4+) + Qr—1
Ky = Py(—)H{ [H,Pe(—)H}, + Ri,) ™"

Tp(+) = (=) + Kilzr — HpZp(—)]
\ i () = [I = KiHy] Pe(-) J

Model-based updates of
state x & state covariance P

Kalman gain: Balances model
and measurement error

Groff & Kasdin 2013

Measurement-based
updates of x & P

é Incoherent estimate is still not recursive: A
A L A 2
[inco,k — Ik — |Ek’
\_ 1‘ Y,
Unprobed Starlight
image estimate

Exoplanets are in the incoherent signal! 26
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* BPE ignores previous estimates
* KF optimally combines previous data with new measurements

* Enables faster correction and robustness to measurement noise

[Kalman Filter Equations (per pixel) \
jflc(—) — §3(+)k—1 +Tuk—1 Model-based updates of
Pk:(—) = P, (+) + Qp_1 state x & state covariance P

K, = Pk(—)H,;F [Hkpk:(—)Hg 4+ Rk]_l } Kalman gain: Balances model Groff & Kasdin 2013

and measurement error

T ("’") = 25 (—) + Kglzx — HpZp(—)] } Measurement-based
\Pk = [ — KpH|Px(—) j updates of x & P

Matrix Representation Dimension
Linearized State Response ® =1 2X2
i rati H N,, x2 4 : H : N
Linear Observation ‘ Y Incoherent estimate is not recursive:
Linearized Complex G 1x N
Response of Probing DM ad A A 2
Linearized Response of I = R{G[1]} - R{G[Nuatl} 2% N, I’I:’)’LCO,I{ — I]C T ‘ Ek ’
Probing DM Z{G[1]} -+ - T{G[Nua] } ¢ y
Disturbance Response A=T 2 X Nt | |
State Cfg'ag:tf:;e (Time  p(—) = Bl(zs — &x(-)) (e — &(-))"]  2x2 .
P Unprobed Starlight
State Covariance Pk(+) — E(Ik _ jk(+))(rk _ fik(+))1 2%2 Image estimate

(Measurement Update)

Procecs Noise Q1 = AB[wewl]AT 2 %2 Exoplanets are in the incoherent signal

Sensor Noise Rk - E[nkn'k, *'\rpp X -'\'vpp 27

Kalman Gain K 2 X Ny,
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Measurement w=[Ir  Tnir  ITpa-
Vector: = h(zy) + nk
Bkl + Lincok
Quadratic |Ex 14?4 Lincok
Measurement h(r) = |E’f’1—‘2.+ Linco,k
Function: .
|Ek,Nyy+|° 4 Linco,k
| [Ek,N,,—* + Linco,k |
Linearized
Observation T, — Oh(Zy)
Matrix: 0T

Tr==2k(—)

~

[ Extended Kalman Filter Equations
k(=) = B(+)k—1 + Tug1

Py(—=) = Py (+) + Qr—1

Ky = Py(—)Hy; [Hp Po(—)Hi, + Ry ™! .
E(+) = (=) + Kl —h(@(-))] |

\ () = 1= K Pe(-)

J

EKF Equations

T
IkaNpp+ Ik'aNpp—]

Riggs et al. 2016

‘Ekz|2 + Iinco,k:
|Ek: + GU1|2 + Iz’nco,k
|Ek: - Gu1|2 + Iinco,k

Q

‘Ek + GU/Npp |2 + Iinco,k:
_‘Ek - GuNpp |2 + Iinco,k;_

Nearly same form as KF’s

Different matrix definitions
because of different x & z

28



@ uimemimiterated Extended Kalman Filter (IEKF)

 Problem: EKF estimates known to be biased

* Solution: Iterating the EKF can reduce the bias error
1. Run EKF

2. Relinearize about new estimate

3. Re-compute H & K.

4. Re-compute x & P.

5. Repeat steps 2-4 until estimates converge.

/ Iterated Extended Kalman Filter (IEKF) Equations \
Oh(x)
Hy; = 5
U lo=a0,:(4)

Ky,i = Puo(—)H{ [Hp i Po(—)Hy ; + Ri] ™"
Zrit1(+) = Zr(=) + Kii (21 — h(@r,i(+)) — Hral (=) — Zr,i(+)])
\ Py iv1(+) =1 — Ky ;Hg ;] Pe(—) /

29
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High Contrast Imaging Laboratory (HCIL)

BMM Kilo
DM2

D = 6 inch
f =60 inch
Collimating

OAP

Fiber Source

Image Credit:
Groff & Kasdin 2013
BMM Kilo

DM1

D = 6 inch
[ =60 inch
Imaging

Camera Focal OAP

Plane
Reimaging Mask
Final Optics
Image
Image Credit:
Riggs et al. 2016
. Stopped-Down PSF
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0 Corrected Iteration 1
-2 '4
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-10

=15 -10 -5

A/D

0
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@ urmunimey |EKF Validation at Princeton

4 Correction Speed Stopped-Down
10 ¢ ' ' | ] Initial PSF
i ——BPE | -3
_425
R
Z
_5 S
10 ¢ 7
n
S
—
+
=
S
-6
10 ¢ -3
_4%5
"
| Princeton HCIL lab data from B
-7/ Riggs et al. 2016 -7

10

-10 =5

0 5 10
£ (A/D)

0 50 100 150
Total Exposure Time (s)<—

— - (Lab time for laserlight. Real starlight
will require much longer exposures.)

Takeaways:
» EKF & IEKF as fast as KF
» All Kalman filter types are faster and achieve better contrast than BPE. 5



& o1 bronuion aporatory |IEKF Validation at JPL

) Correction Speed * WHFIRST SPLC design
1.6x107° _
' ] | e NEC=2x10%
e 1-sided dark hole
I= 6
Cé -6.5
-8 a =7 =
= = 5=
— 8 | = 5
= 1x10 8 3
b}
§ _9 -8.5
= 9Ix107 [— — .
3 5
£ 8x107 — —
7107 [ e s, — .
Riggs+, SPIE 2016 o
qg® PR | || P
0 5 10 15 20 25 30 35 40 45% o E

Total Exposure Time (s)
(Normalized Intensity = Contrast/1.3)

Ta keaanS: (Lab time for laserlight. Real starlight
> |IEKF as fast as KF will require much longer exposures.)

> KF & IEKF are faster and achieve better contrast than BPE. 37



@ sy \Wavefront Correction Scheme

—
(@)

&

1

p—
=)

L8 B N B B B B B B B §B B B B B §B B B §B N |

T T — T T T — T T T — T T

|
~

Normalized Intensity
|

i 1 | | i R A A | i R S
L N N B N B N N N N § N §N N § N §B B N N _§ |}

* For initial testing: “science star” correction starts when dark
hole already exists.

* Two phases of correction:

— Stage A: “Bright star” correction: Dig dark hole on bright star. No
planet present yet.

— Stage B: “Science star” correction: Planet (or no planet) included in

incoherent signal
34



& o rrorusion aporaory Planet PSF Correlation

Detection Metric: Normalized 2-D PSF correlation between
planet’s template PSF and IEKF’s incoherent intensity estimate

Exoplanet PSF FWHM

—

5
0

Xo/D

—

“ Model-Based Template PSF
0o * 11 pixels within FWHM
(0 ) 5 10

0.6
-5
i - 0.5
& (Ao/D
Shot Noise Limit (PSF Subt.)
1 — - ~ " - -~ =
o888kl JERRR | o
08 8 N s B 5 R ¥ ;
- S A E BSHB O ° QO M-

L = z - o 18 9 O S x - < s
g0'6 ‘-, ;x"fﬂsﬁ X 2 2
S 041 K x O ¥ ¥ x ¥ ;1 ) 8 B ¥
g 3 .; % b § i * o g :' : .
< 02 : § ¥ & l BEE ¥ g ¥ b
- D g X g 8 2 ‘ :

NS APARSEERPNRIE
O B ' E 2 & o - g X X
w-02- z & : : ! : 3 3 : ¥
n I ox 8 § LEE 3B § x g ; g g l
R —0.41 B EEEEREEEERE %
x ¥ % g x % X x ¥ §
~0.6- I B i
x — Planet x
—0.8~ H - x 7
— No Planet — No Planet ‘ ‘ ‘ ‘ ‘ T
-1 \ \ \ \ \ I I I I
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Expected # of Planet Photons Expected # of Planet Photons

» PSF correlation increases with exposure time if planet is present 37



@ canmamenas ot oo R€CEIVEr Operating Characteristic (ROC)

ROC curve: Plots tradeoff between probability of detection & probability of false alarm

Probability of detection = Fraction of all true planets counted (black points above threshold)
Probability of false alarm = Fraction of spurious signals counted as planets (red points above threshold)

* 1 ROC curve per time step
* Parametrizes the PSF Correlation estimates
e Built by setting minimum PSF correlation value (threshold)

1

° 2
o o

©c <
S

PSF Correlation
o

-0.2
-0.4
—-0.6
-0.8 — Planet
. ‘ ‘ —No Planet
0 10 15 20 25 30

Expected # of Planet Photons
38



@’ canma menine ot ooy RECEIVEr Operating Characteristic (ROC)

ROC curve: Plots tradeoff between probability of detection & probability of false alarm

Probability of detection = Fraction of all true planets counted (black points above threshold)
Probability of false alarm = Fraction of spurious signals counted as planets (red points above threshold)

* 1 ROC curve per time step
* Parametrizes the PSF correlation estimates
e Built by setting minimum PSF correlation value (threshold)

— Planet
l_ﬂ'--ll E
0.9+
0.8
a
© 0.8
0.6 = p 4
= I D o # Operate here |
o 041 20.7 -
5 A,40
) 0.2+ 1 Lo—«06 N
— — - 1 o
5o - oo -
25 _1. B 2 04 i
2 e
0.4 ©0.3 -
A
~0.6/- % 0 .
—0.8 0.1 —~
I E,
0 0 01 02 03 04 05 06 07 08 09 1 o

Probability of False Alarm
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ROC Curve Construction

"Receiver Operator Characteristic (ROC) Curve:

Plots probability of detection vs false alarm rate

1

08
0.6
* One ROC curve per Q o
time step ; Ohi
«  Built by setting 239
minimum PSF 06
correlation value - ‘

—Planet
—— No Planet

|
10 15 20 25 30

Probability of detection =
o Fraction of all true
planets counted

False alarm rate =
o Fraction of spurious

0 .
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