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Motivation 

Ø  Motivation: 
§  To help enhance the detectability of faint exoplanets at small orbital separations from the host 

star  
§  Both ground-based and space-based instruments have not yet achieved the contrast gain 

needed to detect mature planets with masses lower than 1 Jupiter mass at separations 
smaller than 0.5”. 

§  The difficulty arises from the residual glare of starlight at small orbital separations due to 
diffraction, scattered light, and speckles caused by defects in the optical system 

§  New approach -> unify source detection and characterization (Position, Flux or Intensity and 
hence accurate spectrum extraction) into one single rigorous mathematical framework, the 
Bayesian framework, enabling an adequate hypothesis testing given the S/N of the data. 

§  The method will be applied in combination with other post-processing techniques (best suited 
for this approach), for example KLIP, but now recast in a Bayesian perspective. 

q  To extend PowellSakes, PwS, a Bayesian approach, to direct imaging data analysis 
–  PwS has successfully been applied to detect compact sources immersed in a diffuse background 

in Planck maps - Carvalho, Rocha & Hobson, MNRAS, 393, 681C, 2009; Carvalho, Rocha, Hobson & Lasenby, 
MNRAS, 427, 2011; Bayesian Methods in Cosmology’ – CUP, December 2009: chapter on ‘Bayesian Source 
Extraction’ by Hobson, Rocha & Savage; Planck catalog (of compact sources and SZ clusters) papers 
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Bayesian – what does it really mean? 

q What does it mean to recast the problem of planet detection into a Bayesian perspective? 

 A.  The Bayesian framework entails defining the following key ingredients: 
  

               a data model       +      a Likelihood shape       +      model parameter priors 
 
 

         B.   Next apply Bayes Theorem – to retrieve the distribution, pdf, of the model parameters:         
            
           Bayes Theorem           Posterior distributions of the model   +   Best Fit models 
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Bayesian – what does it really mean? 

           A.  The Bayesian framework entails defining the following key ingredients:  

               a data model       +      a Likelihood shape       +      model parameter priors 

Ø  The problem: 
–  Suppose we want to extract the amplitude A of a signal with a known spatial distribution t(x) or τ(x) 

from a measured signal d (x) which is contaminated by noise n(x) 
–  Start by defining your data model, for example: 

 
 
 
          

d(x) = s(x)+ n(x) = At(x)+ n(x)Data Model 

Signal Noise 

Amplitude of the signal – what we want to know  

Signal spatial template  



5 ESI at JPL  •  March 2018 Graça Rocha   

Bayesian – what does it really mean? 

   B.  Next apply Bayes Theorem – to retrieve the distribution, pdf, of the model parameters:         
        Bayes Theorem           Posterior distributions of the model   +   Best Fit models 
 

Ø  Bayes’ theorem states that: 

 

 
 
 
 
Ø  In parameter estimation, the normalizing evidence factor is usually ignored, since it is independent 

of the parameters -  This (unnormalized) posterior constitutes the complete Bayesian inference of the 
parameter values. 

Ø   Inferences are usually obtained either by taking samples from the (unnormalized) posterior using 
MCMC methods, or by locating its maximum (or maxima) and approximating the shape around the 
peak(s) by a multivariate Gaussian. 

Posterior probability distribution of the parameters:  P(Θ) 

Likelihood:  L(Θ) Prior:  π(Θ)  

Bayesian evidence: E 
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Example 
Point sources in Planck mission 

q  Detection of discrete objects (eg point sources) immersed in a diffuse background - the 
background can be white noise, correlated noise, non-gaussian emission, etc. 

 

 
§  It is often assumed that the background is smoothly varying and has a characteristic length-

scale much larger than the scale of the discrete objects being sought 
Ø  Eg Sextractor (Bertin & Arnouts 1996) – run into problems, when the diffuse background 

varies on length-scales and with amplitudes similar to those of the discrete objects of 
interest. 

 

Ø  The extra complication: 
–   The Cosmic Microwave Background, CMB, emission fluctuations varies on a characteristic 

scale of order ∼10 arcmin, similar to that of extragalactic ‘point’ (i.e. beam-shaped) sources or 
the Sunyaev–Zel’dovich (SZ) effect in galaxy clusters, the objects we are interested in; the 
noise is anisotropic and can be corrrelated, destriping residuals, etc.. 

d(x) = s(x)+ n(x) = At(x)+ n(x)
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Standard approach 

§  Apply a linear filter  Ψ(x) to the original image d(x) and analyse the filtered field: 

 
 

§  the filtering process as ‘optimally boosting’ (in a linear sense) the signal from discrete objects, 
with a given spatial template, and simultaneously suppressing emission from the background. 

§  If the original image contains Nobj objects at positions Xi  with amplitudes Ai : 

 
 
 

§  It is straightforward to design an optimal filter function ψ(x) such that the filtered field (1) has the 
following properties: 

(i)  df (Xk) is an unbiased estimator of Ai ; 
(ii)   the variance of the filtered noise field nf (x) is minimized; 
 

§   the corresponding function ψ(x) is the standard matched filter (eg. Haehnelt & Tegmark 1996). 

signal 
generalised noise 
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Standard approach 
Matched Filter 
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Filters - examples 

u  Matched filters: 

 
A is given by the filter:                            , where B(k) (beam or PSF) is known  

                                                  
                         
 
u  Mexican Hat Wavelets: 
 
 

is the power spectrum of the generalized noise estimated on maps M(k) 
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Bayesian vs frequentist 

Ø  Some points to consider: 

q  The approaches outlined have been shown to produce good results, BUT  
–  The filtering process is only optimal among the rather limited class of linear filters and is logically 

separated from the subsequent object detection step performed on the filtered map(s). 
–  The detection threshold is empirically established  - while the threshold is a logical byproduct of the 

framework in the Bayesian approach  (Carvalho, Rocha & Hobson, MNRAS, 393, 681C, 2009; 
Carvalho, Rocha, Hobson & Lasenby, MNRAS, 427, 201) 

–  It is well known that MFs are excellent at finding and locating sources, but not as good at estimating 
fluxes 

–  Do not capitalize on previous knowledge both theoretical (modeling) and observational - for 
example using prior information we can enhance the probability of detecting very faint sources 
reliably (see references above) 

 
q  Bayesian approach 

–  Hobson & McLachlan (2003) first introduced this approach: as in the filtering techniques, the 
method assumed a parameterized form for the objects of interest, but the optimal values of these 
parameters, and their associated errors, were obtained in a single step by evaluating their full 
posterior distribution. It was too slow and slower than the traditional approaches.  

–  New efficient approach with PowellSnakes 
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Bayesian Inference 
basic tools 

Ø  Bayesian inference methods provide a consistent approach to the estimation of a set parameters Θ 
in a model (or hypothesis) H for the data d. 

Ø  Bayes’ theorem states that: 

 
 
 
 
Ø  In parameter estimation, the normalizing evidence factor is usually ignored, since it is independent 

of the parameters -  This (unnormalized) posterior constitutes the complete Bayesian inference of 
the parameter values. 

Ø   Inferences are usually obtained either by taking samples from the (unnormalized) posterior using 
MCMC methods, or by locating its maximum (or maxima) and approximating the shape around the 
peak(s) by a multivariate Gaussian. 

Posterior probability distribution of the parameters P(Θ) 

Likelihood -  L(Θ) 
Prior - π(Θ)  

Bayesian evidence - E 
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Bayesian Inference 
basic tools 

q  In contrast to parameter estimation problems à  in model selection the evidence takes the 
central role and is simply the factor required to normalize the posterior: 

 
 

 
 
 
 
Ø  The evidence is the expectation of the likelihood over the prior, and hence is central to 

Bayesian model selection between different hypothesis Hi 

§  The evidence automatically implements Occam’s razor: 
 A simpler theory with compact parameter space will have a larger evidence than a more 

complicated one, unless the latter is significantly better at explaining the data. 
 

      

Evaluation of this multidimensional Integral is a 
challenging numerical task – resort to sampling 
techniques: MCMC, Multinest, (Sivia &Skilling 2006; 
Feroz et al. 2009), etc. or model the posterior as a 
multivariate Gaussian centered at its peak(s) and apply 
the Laplace formula (Hobson, Bridle & Lahav 2002). 
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Bayesian Inference 
basic tools 

 
 

 
The evidence is the expectation of the likelihood over the prior, and hence is central to Bayesian model 

selection between different hypothesis Hi 

q  The question of model selection between two models H0 and H1 can then be decided by 
comparing their respective posterior probabilities given the observed data set d 

 
 
 
 
 
 
 
 
 
 
                                            where Pr(H1)/ Pr(H0) is the a priori probability ratio for the models 
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Bayesian Inference 
decision theory 

Ø  Probability theory defines only a state of knowledge: the posterior probabilities.  
There is nothing in probability theory per se that determines how to make decisions based 

on these probabilities. 
 

§  To deal with such difficulties, apply decision theory - one must first define the loss/cost 
function L(D, E) for the problem at hand,  

–  where D is the set of possible decisions and E is the set of true values of the entities one 
is attempting to infer. 

–  DT can be applied equally well to both parameter estimation and model selection 

•  Loss function -  maps the ‘mistakes’ in our estimations/selections, D, into positive real 
values L(D, E), thereby defining the penalty one incurs when making wrong judgments. 

 
 The Bayesian approach to DT is simply to minimize, with respect to D, the expected loss: 

          ‘decisions’ D = parameter estimates Θ^ ; ‘entities’ E = true values  Θ∗ of the parameters 
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Bayesian Object Detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors	
  

	
  
q  Data Model  

Ø  consider our data vector d (pixel values  or Fourier coefficients of the image) In each 
frequency channel. With x=position vector in pixel space; Ns = number of sources 

 

 

Ø  vector f = emission coefficients at each frequency, which depend on the emission law 
parameter vector φj of the source; Aj is an overall amplitude for the source at some chosen 
reference frequency 

Ø  In this example the jth source parameters are:                                                     , amplitude, 
position, shape parameters, emission law parameters 

data	
  

signal	
  from	
  the	
  sources	
   Background	
  sky	
  emission	
  
1)	
  Foregrounds,	
  CMB,…	
  
2)	
  Speckles,	
  systemaNcs,..	
  

Instrumental	
  noise	
  

Generalised	
  noise	
  (correlated	
  and	
  white	
  noise)	
  

+   

convolved spatial template at each frequency of 
a source centered at the position Xj and 
characterized by the shape parameter vector aj  
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Bayesian Object Detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors	
  

	
  
q  Likelihoods 

The form of the likelihood is determined by the statistical properties of the generalized noise 
(background sky emission plus instrumental noise) in each frequency channel 
Ø   if the background ‘noise’ n is a statistically homogeneous Gaussian random field with covariance 

matrix N = <nnT> - Multivariate Gaussian Likelihood 
 
 
 
 

²  We are interested in the likelihood ratio between the hypothesis Hs that objects (of a given source 
type s) are present and the null hypothesis H0 that there are no such objects (= corresponds to 
setting the sources signal s(x;Θ) to zero): 

 
 
 
 
 

 

tilde denotes a Fourier transform 
K=2πη mode wavenumber ;  
N(η)= generalized noise cross-power spectra   
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Bayesian Object Detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors 

q How frequentist approach naturally emerges within the Bayesian framework 

u  Maximizing the likelihood ratio, with respect to the source amplitudes Aj 

   We recover the expression for the MMF 
 
 
 
 

u  Substituting this maximum-likelihood (ML) estimate onto the Likelihood ratio 
expression we get for the jth object: 

  
 
 
 
 

     
 
 

   
 
Thus, one sees that in the traditional approach to catalogue making, in which one compares the 
maximum SNR of the putative detections to some threshold, one is really performing a generalized 
likelihood ratio test (GLRT) 

SNR (at the peak) of the jth source 
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 Likelihood manifold 

Position subspace (X,Y) ; High res antenna (A,R) subspace ; (X0,Y0) of a maximum  

u The filtered field is the projection of the likelihood manifold onto the sub-space of 
position parameters Xj 

A

R
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Bayesian Object detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors	
  

	
  
q  Priors 

–  The Jeffreys (Jeffreys 1961) rule for constructing ignorance priors for the one-dimensional case 
read:                                       

Ø                                               

 

 
q  Examples of priors used: 
 
§  Prior on positions: if the sky patches used are sufficiently small, our locally uniform model can 

easily cope with clustering when the gradient of the density of sources is small across the patch 
boundaries. 

–  The correctly normalized positions prior for the complete ensemble of sources in a patch is 
simply 

 
 

–  Npix is the number of pixels in each patch and Ns is the number of sources in that patch 

Fisher	
  informaNon	
  

where 
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Bayesian Object detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors	
  

	
  
q  Prior on the models: The prior ratio Pr(H1)/ Pr(H0) on the models is often neglected (i.e. assumed to 

equal unity), but plays a very important role in the PwS detection criterion 

§  let us imagine we know in advance all the true values of the parameters that define an object, which 
translates into delta-function priors, then we obtain the inequality: 

 
 
§  interpret the term ln( Pr(H0) /Pr(H1) ) as an extra ‘barrier’ added to the detection threshold  

Ø  because we are expecting more fake objects than the objects of interest, due to background 
fluctuations 

§  Assuming Poisson statistics for the number of sources and the number of likelihood maxima 
resulting from the background fluctuations:  

      

λ0 =expected number of maxima per unit area resulting from background fluctuations above the 
minimum limit of detection of the experiment 
λ1 = number density of sources above the same limit - derived from their differential counts 
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PWSIII 

q  At the Post-Processing stage there are a number of Image Processing techniques that 
aim at modeling and subtracting the stellar Point Spread Function, PSF, to allow the 
planet to become detectable, in effect increasing the contrast achievable next to a 
bright star: 

Ø  Angular Differential Imaging, ADI, (Marois et al. 2008) 
Ø  LOCI, (Lafreniere et al. 2007);   
Ø  Reference Differential Imaging RDI  
Ø  Principal Component Analysis, PCA, (Amara & Quanz 2012, Meshkat et al. 2014) 
Ø  KLIP (Soummer et al. 2012) which uses the Karhunen-Loeve, KL, transform to model the PSF 
Ø   Stochastic speckle discrimination, SSD, (Gladysz & Christou 2008)  
Ø  Enhanced faint companion photometry and astrometry using wavelength diversity (Burke & 

Devaney 2010) 
Ø  KLIP-FM (Pueyo 2016) 
Ø  ….. 



22 ESI at JPL  •  March 2018 Graça Rocha   

PWSIII 

(1)  Construct the Likelihood,. L ((x, y), t, λ, I): 

Ø  As the subspace are independent we can recast it as: L ((x, y), t, λ, I)= L ((x, y), I) x L (t) x L (λ);  
Ø  Spatial likelihood - Multivariate Gaussian 
Ø   Temporal Likelihood -  mild Non- Gaussian likelihood specified by the first 3 moments of a PDF 

(Rocha et al. 2001, Rocha et al. 2005)  
Ø  The priors for the model parameters will be constructed based on previous observations and any other 

relevant information that helps distinguishing the signal from the noise 
Ø  Construct an optimal adaptive matched filter (MF): based on the spatial estimation of the noise (using 

KLIP for example) and a spatial model for the planet (e.g. a Airy function) and/or – current study 
Ø   Use multi-wavelength data to estimate the covariance of the data, estimate the PSF and construct a new 

Multi-Matched filter, MMF, a whitening filter (akin to the Hotelling observer), 

(2)  Estimate the posterior distributions of the model parameters  +   the evidence ratios of the 
competing models 

(3)  To improve detection characterization - repeat the previous step -  this time as a temporal analysis 
of the peaks in the previous Likelihood manifold (filtered map in the positional subspace): 
§  (a) Construction of a potentially Non-Gaussian Likelihood based and construction of priors for the 

moments of the distribution, (b) estimating the posterior distributions of these moments and (c) the 
evidence ratios of the competing probability distributions 

q  Quantify performance of PWSIII using simulations with injected planets 
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PWSIII: current - Keck telescope  
future - JWST(MIRI), WFIRST, HabEX, LUVOIR 

HR8799
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PWSIII: current - Keck telescope  
future - JWST(MIRI), WFIRST, HabEX, LUVOIR 

HR8799
Keck data

HR8799
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Appendix 
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PowellSnakes - A fast Bayesian approach for detection of compact localised objects 
                     immersed in a diffuse background on large datasets  

 

‘Bayesian Methods in Cosmology’ – CUP, December 2009
chapter on ‘Bayesian Source Extraction’ by Hobson, Rocha & Savage

                 Carvalho, Rocha & Hobson, MNRAS, 393, 681C, 2009
              Carvalho, Rocha, Hobson & Lasenby, MNRAS, 427, 2011
              Rocha, in preparation
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A Bayesian approach for detection and 
characterization of extrasolar  planets 

Graca Rocha,   
Dimitri Mawett,   
Bertrand Mendelshon,  
Tiffany Meshkat, 
Gautam Vasisht 
 
JPL, Caltech & IPAC 

 
	
   	
   

ESI at JPL, 26th of March 2018
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Motivation 

q  To extend PowellSakes, PwS, a Bayesian approach, to direct imaging data analysis 
–  PwS has successfully been applied to detect compact sources immersed in a diffuse background in 

Planck maps - Carvalho, Rocha & Hobson, MNRAS, 393, 681C, 2009; Carvalho, Rocha, Hobson & Lasenby, 
MNRAS, 427, 2011; Bayesian Methods in Cosmology’ – CUP, December 2009: chapter on ‘Bayesian Source 
Extraction’ by Hobson, Rocha & Savage. 

Ø  Motivation: 
§  To help enhance the detectability of faint exoplanets at small orbital separations from the host 

star  
§  Both ground-based and space-based instruments have not yet achieved the contrast gain 

needed to detect mature planets with masses lower than 1 Jupiter mass at separations 
smaller than 0.5”. 

§  The difficulty arises from the residual glare of starlight at small orbital separations due to 
diffraction, scattered light, and speckles caused by defects in the optical system 

§  New approach -> unify source detection and characterization (Position, Flux or Intensity and 
hence accurate spectrum extraction) into one single rigorous mathematical framework, the 
Bayesian framework, enabling an adequate hypothesis testing given the S/N of the data. 

§  The method will be applied in combination with other post-processing techniques (best suited 
for this approach), for example KLIP, but now recast in a Bayesian perspective. 
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Bayesian – what does it really mean? 

Ø  Bayes’ theorem states that: 

 
 
 
 
 
 
Ø  In parameter estimation, the normalizing evidence factor is usually ignored, since it is independent 

of the parameters -  This (unnormalized) posterior constitutes the complete Bayesian inference of 
the parameter values. 

Ø   Inferences are usually obtained either by taking samples from the (unnormalized) posterior using 
MCMC methods, or by locating its maximum (or maxima) and approximating the shape around the 
peak(s) by a multivariate Gaussian. 

Posterior probability distribution of the parameters:  P(Θ) 

Likelihood:  L(Θ) Prior:  π(Θ)  

Bayesian evidence: E 
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Object detection strategy 
(briefly) 

Ø  Evaluation of the odds ratio 

–  ‘Brute force’ evaluation of the evidence integrals is still not feasible 
–  Use MCMC methods and thermodynamic integration - can fail when the posterior distribution 

is very complex 
–  use ‘Nested Sampling’ (Sivia &Skiling 2006),which is much more efficient, although not 

without its difficulties; MultiNest’ (Feroz et al. 2009) efficient implementation of the nested 
sampling algorithm, which is capable of exploring high-dimensional multi-modal posteriors; 
other simpler nested sampling scheme (Mukherjee, Parkinson & Liddle 2006) perform well. 

Or use another approach (as in PwsI): 

–  PwS I started a Powell minimization chain (hence the name ‘PowellSnakes’) in many 
different locations of the manifold in an attempt to find all the maxima - where the Brent line 
minimizer was ’enhanced’ with an ancillary  step to allow it to ‘tunnel’ from one minimum to 
the next.  

–  Explore the fact that we can separate the position variables from all others- so first locate 
maxima in position space, then  start a four-dimensional PwS optimization at each such 
location to find the ML parameters for that particular peak 
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Object detection strategy 
(briefly) 

Ø  Exploring the posterior distribution 

–  Our initial step provides the ML estimates and the SNR of each detection candidates 
–  Only a much smaller sub-set is chosen based on an SNR threshold. 
–  This shorter list is then sorted in descending order of SNR and one-by-one the maxima are 

sent to the nested sampler, 
–  The nested sampler returns an evidence estimate and a set of weighted samples that we use to 

model the full joint posterior distribution 
–  The final catalogue is almost completely independent of the SNR threshold if this is not too 

high 
–  From these samples we can compute any parameter estimate, draw joint distribution surfaces, 

predict HPD intervals of any content over the marginalized distributions to infer the parameter 
uncertainties 
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PWSIII 

(1)  To improve detection characterization repeat the previous step -  this time as a 
temporal analysis of the peaks in the previous Likelihood manifold (filtered map in 
the positional subspace): 
§  (a) Construction of a potentially Non-Gaussian Likelihood based and construction of priors 

for the moments of the distribution, (b) estimating the posterior distributions of these 
moments and (c) the evidence ratios of the competing probability distributions 

 
q  Quantify performance of PWSIII using simulations with injected planets 

 
Ø  Ongoing work with Keck data for HR 8799 
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PWSIII 

q  At the Post-Processing stage there are a number of Image Processing techniques that 
aim at modeling and subtracting the stellar Point Spread Function, PSF, to allow the 
planet to become detectable, in effect increasing the contrast achievable next to a 
bright star: 

Ø  Angular Differential Imaging, ADI, (Marois et al. 2008); LOCI, (Lafreniere et al. 2007);  
Reference Differential Imaging, RDI; Principal Component Analysis, PCA, (Amara & Quanz 
2012, Meshkat et al. 2014); KLIP (Soummer et al. 2012) which uses the Karhunen-Loeve, KL, 
transform to model the PSF; Stochastic speckle discrimination, SSD, (Gladysz & Christou 
2008) Enhanced faint companion photometry and astrometry using wavelength diversity (Burke 
& Devaney 2010); KLIP-FM (Pueyo 2016) 
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PWSIII 

HR8799 
Keck data 
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Bayesian Object detection 
Ingredients:	
  Data	
  Model,	
  Likelihood	
  and	
  Priors	
  

	
  
q  Priors 

If the data model provides a good description of the observed data and the SNR is high –  
–  prior will have little or no influence on the posterior distribution.  

At the faint end of the source population, when we are getting close to the instrument sensitivity 
limit, however, priors will inevitably play an important role.  

–  The selection of the priors becomes important and has to be addressed very carefully. 

PwSII separates the tasks of source detection (deciding whether a certain signal is due to a source) 
and source estimation (determining the parameters of the source).  

–  This separation has the advantage of allowing the use of different sets of priors at each stage. 
Ø  First perform the source detection step using ‘informative’ priors, which encompass all the available 

information, since they provide the optimal selection criterion and the optimal estimators.  
Ø  After the set of detections has been decided, PwS proceeds to the estimation pass, in which ‘non-

informative’ priors may be used instead. 
 

majority of applications, the parameters may be assumed independent, so that the prior 
factorizes 


