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Manifold learning / nonlinear dimensionality
reduction (NLDR)

* Group of techniques to characterize / explore high-dimensional data
and correlations in high dimensions

 Common examples include the self-organizing map (SOM), t-SNE,
local linear embedding (LLE), and UMap

* Most project the high-D manifold down to a lower-D representation

* Whereas deep convolution networks try to learn a complex high-
dimensional relationship between input data and output labels, NLDR
just tries to unwrap the high-D data in an unsupervised way — no

outputs



Training the SOM map

7/27/20

Training data

Best-matching cell in
current SOM

1.

Initialized map is presented with training data, i.e. the colors of one galaxy from
the overall sample.

Map moves towards training data, with the closest cells being most affected.

Process repeats many times with samples drawn from training set until the map
approximates the data distribution well.



The galaxy color manifo
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Figure 5. LSST and WFIRST colors of the trained SOM at each cell from top-left to bottom-right color-coded by: upsst—grssT, gLssT —

rLSST, 'LSST — ILSST» ILSST — ZLSST, ZLSST — YWFIRST: YWFIRST — JWFIRST: JWFIRST — Hwrirst, and Hypirst — F184WwrirsT-
SOM is selected to be a mesh of 80 x 60 cells. The axes are arbitrary and each position on the two dimensional map points to a position

in the 8 dimensional color space. .
Hemmati et al. 2018



Other techniques -
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Model of galaxy manifold
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C3R2 = Complete Calibration of the Color-Redshift Relation

Judith Cohen (Caltech) - Pl of Caltech Keck C3R2 allocation
16 nights (DEIMOS + LRIS + MOSFIRE, kicked off program in 2016A)
Daniel Stern (JPL) - Pl of NASA Keck C3R2 allocation
10 nights (all DEIMOS; “Key Strategic Mission Support”)
Daniel Masters (JPL) — Pl of NASA Keck C3R2 allocation 2018A/B
10 nights (5 each LRIS/MOSFIRE; “Key Strategic Mission Support”)
Dave Sanders (IfA) - Pl of Univ. of Hawaii Keck C3R2 allocation
6 nights (all DEIMOS) + H20
Bahram Mobasher (UC-Riverside) - Pl of UC Keck C3R2 allocation
2.5 nights (all DEIMQS)

+ time allocations on VLT (Pl F. Castander), MMT (PI D. Eisenstein), and GTC (PI C. Guitierrez)
-Sample drawn from 6 fields totaling ~6 deg?

Additional Collaborators: Peter Capak, S. Adam Stanford, Nina Hernitschek, Francisco Castander, Sotiria
Fotopoulou, Audrey Galametz, lary Davidzon, Stephane Paltani, Jason Rhodes, Alessandro Rettura, Istvan
Szapudi, and the Euclid Organization Unit — Photometric Redshifts (OU-PHZ) team

-



C3R2-Keck stats through DR2 (2016A-2017A)
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C3R2 — Results from SOM method

4 4| Average NMAD: 2.3% |
5 Slope: 0.0029 / mag !
S 3| = -
O
3] o 2
2
° = 1
z
o =)
N 5] © 01
= (o]
O _g ~11
n =)
C -2
11 J g
~~" ONMAD s -3
s Nout = <
. —4]
o Bias (1 , , , : , , ,
05 i —03 -02 -01 00 0.1 0.2 0.3 0' - = Sl

Az/(1+7Z

phot) / (1 + Zspec)

* Compare spé&uditief rachiom ghilr% o @ted @s 36 filned ofld).299M position)

* [llustrates weak (and measilatiiepsedhirding dep@sddrvertfrredsisft on magnitude at fixed
color in the LSST+Euclid color space



AMagnitude at fixed color

|
IN

|
=

|
N

|
w

‘ixed color

4l 2<0.4
Average NMAD: 2.2%
3| Slope: 0.0027 / mag - . B

-03 -02 -01 0.0 0.1

0.2

0.3

104<2z2<0.8

Average NMAD: 2.3%

| Slope: 0.0028 / mag

-03 -0

-0.1 0.0 0.1

Az/(1+7Z

0.2

0.3

Remarkably stable relationship of dmag/dz at

| Slope: 0.0024 / mag

z>0.8
Average NMAD: 3.0%

-03 -02 -01 0.0 0.1 0.2 0.3

Hemmati et al. 2018



Spectroscopic Databases: Requirements

* We will have hundreds of thousands of deep galaxy spectra in the
mid-2020s

 Careful vetting necessary for calibration sample

e Database that can easily ingest new spectroscopy (e.g., from grisms)
* Machine learning-based redshifts may prove critical

* Huge task - how do we get there?



What happens to the manifold when we go
deeper, as with WFIRST?
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Figure 10. Bright (riz < 25; Euclid depth) and faint (riz > 25) galaxies in WFIRST lensing sample are mapped to the SOM color coded
by median redshifts (shown on left and middle panels). More than 95% of the SOM cells contain at least one bright galaxy, ~ 71% of the
SOM cells contain at least one faint object, and only ~ 4% of cells contain only faint galaxies (right panel).



Galaxies at fixed observable (e.g. color) are
spectrally very similar
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Galaxies are not unique

* The manifold of galaxy observables is finite.
* We can measure it really well with large surveys.

* Continuity constraints could then allow us to build a dynamic picture

of galaxy growth
»Individual galaxies can be thought of as moving along the manifold.

* What could we learn from this?



Measure the high-dimensional manifold.
Then what?

* We have a well-defined target for simulations

* What if we find (as is common) that the simulations produce
unphysical galaxies, or can’t produce certain real galaxies?

* Is there a way to systematically search for the simulation parameters
that produce the observed universe?

 What have we learned about galaxies at the end?

* Manifold mapping can definitely enable very rapid physical parameter
estimation.



Models — can we match them to the data?
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