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Gg/ Outline

 |ntroduction
— NASA's downscaling assessment

» Systematic evaluation of CORDEX RCMs using
RCMES
* Use cases of RCMES

— Evaluation of hourly rainfall characteristics in RCM
simulations

« Toward the model evaluation of the future

— Combining multiple metrics into one: multi-objective
optimization

— Multi-resolution investigation of climate models
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Regional Climate Model

i
“ran

images from http://climate4impact.eu

Use a RCM much higher spatial resolution and
possibly improved physical process representation
over the area desired for impacts assessment with the

boundary values from the GCM

courtesy of Duane Waliser and Jonathan Case images from http://www.cordex.org/ S“de 4/58



soyDownscaling Assessment by Multi-NASA Centers
| (JPL, GSFC, MSFC, AMES)

* High resolution is thought to be crucial for the
accurate representation of some
processes/phenomena.

* Downscaling assessment questions:

— Under ideal forcing conditions (e.g. high-quality re-
analyses), how good are RCMs at replicating important
weather and climate processes/phenomena?

— Under what conditions does downscaling (RCMs driven by
GCMs) give valid results?

— Do high resolution RCMs (5km or finer) offer anything that
can’t be obtained via coarser resolution GCMs (25km or
coarser)?

courtesy of Duane Waliser and Jonathan Case S“de 5/58



Types of Simulations

. NASA Unified-WRF (NU-WRF) with MERRA-2
six-hourly reanalysis boundary conditions
« CONUS domain, resolutions: 24 km, 12 km, 4 km
i « Characterize fidelity of fine-grid RCM for
7" important processes/phenomena.
A) Evaluate fine-grid: Score = RCM

. NASA GEOS-5 Replay mode constrained by

MERRA-2
e Global domain, resolution: 12.5 km
B) Evaluate fine-grid GCM: Score = f{GCM

C) Evaluate coarse-grid GCM: Score = cGCM

Slide 6/58



@Assessing the Value of Dynamical Downscaling

Used together, Scores RCM, fGCM and cGCM
guantify the value of dynamic downscaling for the
given process/phenomenon.

Dynamic downscaling of little/no value.

- -

cGCMRCM fGCM
Dynamic downscaling of high value.

- .

cGCM RCM fGCM

courtesy of Duane Waliser and Jonathan Case S“de 7/58



Outline

. Introduction

« Systematic evaluation of CORDEX RCMs using

the Regional Climate Model Evaluation System

— The following slides are provided by Alexander Goodman at JPL

— Lee et al. (2018), Regional Climate Model Evaluation System
(RCMES) powered by Apache Open Climate Workbench (OCW)
v1.3.0, in preparation.

« Use cases of RCMES

— Evaluation of hourly rainfall characteristics in RCM
simulations

« Toward the model evaluation of the future

— Combining multiple metrics into one: multi-objective
optimization
— Multi-resolution investigation of climate models  gj4q g/55



The Regional Climate Model Evaluation System
(RCMES, http://rcmes.jpl.nasa.gov)

e Joint collaboration: JPL/NASA, UCLA

* Python-based open source software powered by the
Apache Open Climate Workbench library

Jet Propulsion Laboratory
California Institute of Technology

Regional Climate Model Evaluation System

Regional Climate Model Evaluation System
Home About Collaborations Software & Support Publications Data Apache OCW Ci t

Supporting CORDEX / IPCC Global Climate
RCMES is supporting the

Decision
Projections

which contributes to the assessment of regional climate change
for the

Supporting CORDEX /IPCC IS




Regional Climate Model Evaluation System

: Motivation & Goals

N "”@541

Observe & Model Simulation Global Regional Decisions &
Characterize & Evaluation Projections | Predictions | Investments
]
GOALS RCMES

« Make observation datasets, with some emphasis on satellite data, more
accessible to the regional climate modeling community.

« Make the evaluation process for regional climate models simpler, quicker
and physically more comprehensive.

* Provide researchers more time to spend on analysing results and less
time coding and worrying about file formats, data transfers, etc.

BENEFITS

» Quantify model strengths/weaknesses for development/improvement
efforts.

 Improved understanding of uncertainties in predictions. Slide 10/58



o User Input (a configuration file)

Observation for Evaluation * Model data for Evaluation
obs4MIPs Spatial Boundaries L ESGF
: Over 30 Satellite — Temporal Boundaries & Resolution ! i Several Models :
. variables on ESGF | | w v | . (e.g. CMIP5, CORDEX) !
: —> Extract OBS data Extract model data 4— :. :
N nmmmmossemeceeeeceeooee g \ | J ]

Oother | —— | * _____________________

i I ]
: Local — i Other
! oca ; oca : !
Data : Regridder o : ' Data
: Disk Put the OBS & model data on the same spatial grid Disk ! .
! . Centers

Centers ¢ .
RCMES : Metrics Calculator
Observational i (Calculate evaluation metrics) » Data extractor to netCDF
Database ; | | Use the re-gridded data for
i (e.g., TRMM, CRU, i | Visualizer ! user’s own analyses and
UDEL) ; \ (Plot the metrics) ,,' visualization.
(a configuration file) ®

RCMES captures the :;
entire workflow.

Another user can reproduce the same
results using the captured workflow.




A Systematic Evaluation Of CORDEX
Simulations Using Obs4MIPs

Leverage NASA-sponsored WCR P
RCMES and NASA- co-

sponsored obs4MIPs to

benefit WCRP/CORDEX

GOALS

o Make it easy to perform systematic evaluations with CORDEX

domains, models and variables
Utilize the Regional Climate Model Evaluation System

o Leverage NASA satellite observational datasets in evaluations
- Utilize the Observations for Model Intercomparisons Project (Obs4MIPSs)
- Evaluate the simulate variables other than temperature and precipitation

e INncrease communication and collaboration between CORDEX

domains
Slide 12/58



COREX has 14 Domains

Each Domain has N RCMS

RCM-2 = RCM-3
RCM-4 | RCM-5 || RCM-6

RCM-7 u RCM-N

$

Each RCM has M Variables

obs4dMIPs - e.g. M Satellite
Variables for Model Evaluation

QuikSCAT

Variable-1 Variable-2

"4;;1! «0;17‘ nt;af;si—‘::; on'zoi win . Variable-3 Variable-4
e ol ) R e R Model Evaluation
e o el Variable-5 Variable-6

v B

| .
/ D A Variable-M

Slide 13/58



Why do we need “Systematic

workdir: /home/goodman/data_processing/CORDEX/analysis/NAM-44/CERES-EBAF/rlus/annual
output_netcdf_filename: rlus_CERES-EBAF_NAM-44_annual.nc

time:
maximum_overlap_period: True
temporal resolution: monthly
month_start: 1
month_end: 12
average_each_year: True

space!

boundary_type: CORDEX NAM

regrid:
regrid_on_reference: True

datasets:

- loader_name: local_split
name: CERES-EBAF
file_path: /proj3/data/obs4mips/rlus_CERES-EBAF_L3B_Ed2-8_x*.nc
variable_name: rlus
loader_name: local_split
name: UQAM-CRCM5
file_path: /proj3/data/CORDEX/NAM-44/rlus/rlus_NAM-44_ECMWF-ERAINT_evaluation_r1ilpl_UQAM-CRCM5_v1_mon_x.nc
variable_name: rlus

" e: local_split
name: SMHI-RCA4
file_path: /proj3/data/CORDEX/NAM-44/rlus/rlus_NAM-44_ ECMWF-ERAINT_evaluation_r1ilpl_SMHI-RCA4_v1_mon_x*.nc
variable_name: rlus

lon_name: lon
loader_name: local_split
name: DMI-HIRHAMS
ath: /proj3/data/CORDEX/NAM-44/rlus/rlus_NAM-44_ECMWF-ERAINT_evaluation_rlilpl_DMI-HIRHAM5_v1_mon_s.nc
name: rlus

loader_name: local_split
name ! MOHC-HadRM3P
file_path: /proj3/data/CORDEX/NAM-44/rlus/rlus_NAM-44_ ECMWF-ERAINT_evaluation_r1ilpl_MOHC-HaaRM2P_vi_mon_sk.nc

variable_name: rlus

lon_name: lon

Evaluation”?

This CF file (namelist file)
is necessary to run each
evaluation combination
(CORDEX Domain, Season
and Variable), forming a
large “evaluation matrix”.
14 variables x 13 domains
X 3 seasons x ~10 models:
5000 evaluations

Three input parameters
1. CORDEX domain name
2. obs. data location
3. model data location

Slide 14/58



Europe

1 . 2 % QuikSCAT

1 IPSL-INERIS-WRF331
2 DMI-HIRHAMS

O- 9 3 SMHI-RCA4
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O 6 5 MPI-CSC-REMO2009
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MODIS Total Cloud Fraction %) winter)

North America

* MODIS
1 DMI-HIRHAMS
2 UQAM-CRCM3

83 - .
73 I8
83
38 .
6
0
-6
-12
-18
—-24

. " . . L e L .
0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35
Standard deviation
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TRM M PreCi pitation (mm/month) (annual)
Africa

* TRMM-L3
1 MPI-CSC-REMO2009

MMMMMMMMMMM

1 . 2 4 MOHC-HadGEM3-RA

09 0.0 0.1 6 BCCR-WRF331
0.2 7 CLMcom-CCLM4-8-1

0 6 - 8 UQAM-CRCMS

03 3
0.0
-0.3
_06 1.05}
-09 |
-1.2

0 00 n L L i .'l‘. L
0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35

Standard deviation

* Initial Evaluations have focused on the three domains (North America,
Europe, and Africa) with the most simulations on the ESGF.

« Analyze and post remaining evaluations with simulations (not on ESGF
but) made available to us (e.g. East Asia).

« We will publish these results on the RCMES website.

Slide 17/58



* [ntroduction

e Systematic evaluation of CORDEX RCMs using
the Regional Climate Model Evaluation System

« Use cases of RCMES

— Evaluation of hourly rainfall characteristics in RCM

simulations

Lee et al. (2017), Evaluating hourly rainfall characteristics over the U.S. Great Plains in
dynamically downscaled climate model simulations using NASA-Unified WRF, JGR.

« Toward the model evaluation of the future

— Combining multiple metrics into one: multi-objective
optimization
— Multi-resolution investigation of climate models

Slide 18/58



Hourly Precipitation [mm/hr] datasets

@
-

over the Great Plains in summer (JJA)

Resolution Period 10: Northern Plains
Observations
Stage IV | 4 km, hourly 2002-2010
GPM |0.1°, 30 minutes| 2014-2015 11 Central Plains
NU-WRF with spectral nudging 1
WRF24 | 24 km, hourly 2002-2010
WRF12 | 12 km, hourly 2002-2010 Aol
WRFO04 | 4 km, hourly 2000-2004 ¥_¥\_1§_=/_5_<_’f§{‘em Plains
GEOS replay NErA
GEOS |12.5 km, hourly.  2002-2009




@/ Challenges in evaluating
high-resolution model output
« The high-resolution climate simulation results from

GEOS and NU-WRF are massive and stored on the
NASA Center for Climate Simulation (NCCS) servers at

Goddard.
24 km 560 G
12 km 22T
4 km (expected to be more than 8 Terabytes)

« Conventional model evaluation technigues require
regridding of datasets.

« B4 simulation is only available for five years (2000 -
2004). GPM data became available in 2014.

Slide 20/58



@/ Objectives

« Evaluate the NU-WRF and GEOS simulations
using a metric which
— does not require transfer of massive datasets,
— does not require regridding of original output,
— highlights advantages of high-resolution simulations.

 When it rains at somewhere In
the Great Plains, would there be
a probability density function to
forecast how
(strong/long/much) it will rain?

Slide 21/58



— Definition of wet spell duration [hours] and peak
: rainfall [mm/hr] [Kendon et al., 2014]
half-hourly GPM precipitation
(at Lat.=40.25N & Lon.=98.15W on June 27t and 28, 2014)

spell duration
b «—> <>

® @ PR>0.1mm/hr |

peak intensity

PR [mm/hr]
s B 0 W A U O N W

>
=

A |

12 PM 4 PM 8 PM 12 AM 4 AM 8'AM 12 PM 4 PM
Time

(spell duration, peak intensity) over a season » joint
at every grid points in a region of interest distributions



=
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Peak rainfall [mm/hr]
N D
o O

© o O
R N U

weX’ Aloint Probability Distribution Function (JPDF)

@/ of Rainfall Duration and Intensity

1

X-axIs: duration

y-axis: peak intensity

color: probability
density [%]

5 10 15 20 24
Spell duration [hrs]
0.010.10 05 2 5 25

2 p(duration, intensity)=100 % | ...




@/ What is the added value of high-
| resolution RCM simulations?

« from Figure 4 in Kendon et al. [2014]: model biases in the
joint probability distribution of wet spell duration (x-axis)
vS. peak intensity (y-axis).

 The 1.5 km model simulates more realistic hourly rainfall
characteristics including extremes.

[RCM’s joint histogram] — [observed joint histogram]

20 Resolution: 12 km 20 - Resolution: 1.5 km

Peak rainfall (mm K1)
Peak rainfall (mm k)

1.0
0.5
0.2
o1 I

T T T T T T T T T T T T T T T T

1 5 10 15 20 24 36 T2 1 Y 10 15 20 24 36 72

Spell duration Ch) Spell duration Ch)
T I ] L I

—0.020 —0.005 0 0.005 0.020 —0.020 —0.005 0 0.005 0.020



@/ Comparison of two JPDFs

Model - Observation Overlap

Observation

£ 0.2
T 20 | |
€ 0.1
g 3 5 10 15 20 24
® 1.0 Spell duration [hrs]
]
&
B B

0.5 cor a1 a3 2

Mm ‘ ‘ ‘

0.1

1 5 10 15 20 24

uuuuuuuuuuuuuuuuuu

Spell duration [hrs]

* As a measure of similarity between
two joint PDFs, the overlap ratio

| was calculated (0%: no overlap,

Model ' 100%: perfect overlap).

IIIIIIIII
20

overlap tatio %] = Y2, minlfi(z,y), fa(z.y)



Peak rainfall [mm/hr]

Peak rainfall [mm/hr]
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eak rainfall [mmy/hr]
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eak rainfall [mm/h
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Comparison of JPDFs:

Northern Plain, Summer
(mode
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* Less frequent
short-duration
downpour
events in both
NU-WRF and
GEOS regardless
of resolutions.



woX Overlap of the joint probability functions of rainfall .
duration and peak intensity

(observation data: Stage V)

[%] Central/ Southan
\Plams Plains ‘Plains.

WRF24 70.0 67.4 61.6

WRF12 79.3 78.1 /4.4

WRF04 83.9 81.2 82.3
(2000-2004)

GEOS 63.8 51.4 29.8
(2002-2009)

Slide 28/58



Peak rainfall [mm/hr]

Peak rainfall [mm/hr]
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duration and peak intensity
(observation data: GPM IMERG)

@/ X Overlap of the joint probability functions of rainfall

[%] Nor#therﬁ | Cenfral/ Southerﬁ
Plams\ Plams __;.\_I?Ial.ns”
WRF24 67.7 62.3 57.3
WRF12 77.2 72.3 69.6
WRF04 82.7 76.8 76.5
(2000-2004)
GEOS 72.1 60.6 37.9
(2002-2009)
MERRA2 38.1 29.4 17.9
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Spectral nudging effect
@ (observation data: Stage IV)

[%] Northe‘ ~»; Central*/ _'fouthem
‘Plains .J?Ia ins || Plains
WRF24, 600 km | 700 | 674 | 616
WRF24, 2000 km 69.6 67.2 62.2
WRF24, no nudging 65.8 67.6 63.8
WRF12, 600 km 79.3 78.1 74.4
WRF12, 2000 km 79.5 78.5 75.3
WRF12, no nudging 74.1 76.6 75.4
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Cumulus parameterization effect
@/ (observation data: Stage V)

[%] Northem CentraV Southerh?
PIa Ins ,:_.I?Ia*:;,_n.»stg_._:; ‘Plains’
WRF24, Grell 3-D ensemble 70 0 67.4 61.6
B24, Bretts-Miller-Janjic 7.1 >4.4 52.5
B24, New Kain-Fritsch 62.2 7.3 >5.1
824, New simplified Arakawa-Schubert 698 720 703
WRF12, Grell 3-D ensemble 79.3 /8.1 /4.4
WRF04, Grell 3-D ensemble 83.9 81.2 82.3

Slide 32/58



@/ Issues

* The difference in number of samples. For the
Northern Great Plains,

— WRF24: 1829 grid points
— WRF12: 7296 grid points
— WRF04: 65732 grid points
* The difference In data periods:
— Stage IV, WRF24 and WRF12: 2002-2010
— WRFO04: 2000-2004
— GPM: 2014-2015
* The difference between Stage IV and GPM

Slide 33/58



Remapping Stave IV data onto
WRF12 and WRF24 grid points

() Stage IV grid points

* B12 grid points

* H,: At any grid point, B24
(or B12) can simulate the
°hs precipitation spatially

@00 o
5o :’.;:. ?‘,: ,:"k.: averaged over nearby
Kol hete Stage IV grid points.
0o .*. oo *

:.t.: coco s o « Aggregate of Stage IV
. ?‘0 o o I e data near each B12 (or

B24) grid point and
calculate average.

Slide 34/58



@/ Comparison with averaged Stage IV

* all NU-WREF results with spectral nudging, 600 km

[%] Northerh Central Southern
Plains Plains Plains

WRF24 70.0->82.3 | 67.4->81.6 | 61.6->76.8

WRF12 79.3->84.6 | 78.1->82.3 | 74.4->79.3

WRF04 83.9 81.2 82.3
(2000-2004)

« WRF12 and WRF24 show reasonable agreement
with the aggregated Stage |V data at the coarse

resolution grid points. Siide 35/58



’ X' Lost information due to temporal averaging (1)

| [Stave IV, JJA in 2002, Northern Great Plains]

Original JPDF from
hourly data

« ex) rainfall at 00, 02, 04, 05 UTC : two
events for one hour, one event for two
hours => one event for six hours

. Even the joint PDFs with the same bin widths look totally

different: averaging artifacts. Slide 36/58



weX Lost information due to temporal averaging (2)
| [half-hourly GPM precipitation]

- half hourly
= 3 hourly

PR [mm/hr]

= O = N W O N WA UL O 0O WO
T T T T T T 1

Can this be added
value of high
resolution

‘\A\/\/ — (half hourly) - (3 hourly) | simulations?

_8 AM 12 PM 4 PM 8 PM 12 AM 4 AM 8 AM 12 PM 4PM
Time

* Higher frequency variability in precipitation than an
nour or less have potential to be better reproduced
oy RCMs with high resolution (WRFO04) than low
resolution simulations (WRF12 and WRF24). 375

PR difference [mm/hr]

I
w N




Lost information due to spatial upscaling of high-

resolution datasets [GPM, July 08/2014, 01:30 AM]

A. GPM B. fine-scale A-B. GPM precipitation
precipitation (0.1°) spatial pattern aggregated into B24 grids
. » I
* I — ‘
| |
= + =

« By upscaling high resolution data into low resolution grid points, we lose
fine-scale spatial information that is related to high frequency variability.

 The JPDF of rainfall duration and peak intensity from hourly data without
regridding captures valuable information from high frequency variability
and fine-scale spatial pattern.

« Satellite observations with high temporal and spatial resolutions such as
GPM will highlight added value of high resolution simulations.  gjige 38/53



* The difference in number of samples. For the
Northern Great Plains,

— WR
- WR
- WR

~24: 1829 grid
~12: 7296 grid

noints
noints

~04: 65732 gric

points

* The difference in data periods:
— Stage IV, WRF24 and WRF12: 2002-2010
— WRF04: 2000-2004
— GPM: 2014-2015
* The difference between Stage IV and GPM

Slide 39/58



@/ Uncertainty of the overlap ratio due to
| temporal subsampling

* Hg: Uncertainty of the overlap ratio between
WRFO04 and Stage IV can be estimated by
comparing subsampled JPDFs from WRF12 and
WRF24 with Stage IV JPDF.

« Sampling 2002-2010 without replacement:
for sample_size =1, 8
for number_sample =1, 100
sub_jpdf = CALC _JPDF( )
overlap_ratio = COMPARE(stage4 jpdf, sub_jpdf)

. ex) (2002, 2003, 2005) (2004, 2007, 2008) (2002, 2009,

2010) ... (2002, 2004, 2010)
Slide 40/58



0.0

v gample mean of the overlap ratio

:}#{*Fi o o o |
e S S s———
1 2 3 4 5 6 7 8 9

number of sampled years

Stdev. of the overlap ratio

— \WRF24 .
—e WRF12 |

1

2 3 4

5

6 7 8 9

number of sampled years

The uncertainty is defined as standard deviation of the

evaluation metric values (overlap ratio) for random subsamples.

The uncertainty of the overlap ratio decreases by building a
JPDF using output for a longer period.



* The difference in number of samples. For the
Northern Great Plains,

— WR
- WR
- WR

~24: 1829 grid
~12: 7296 grid

noints
noints

~04: 65732 gric

points

* The difference In data periods:
— Stage 1V, WRF24 and WRF12: 2002-2010
— WRF04: 2000-2004
— GPM: 2014-2015
* The difference between Stage IV and GPM
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Stage IV [2002-2010]

Northern: 83.8 %
Central :82.4%

Vuthern: 84.7 %

Stage IV [2014] = T GPM [2014]

Northern: 82.1 %
Central :87.4%
Southern: 80.9 %

Northern: 81.0 %
Central :84.5%
Southern: 84.6 %

Cm—)
[%] Northern Central Southern
Plains Plains Plains
WRFO04 & Stage IV 83.9 81.2 82.3
WRF04 & GPM 82.7 76.8 76.5 Siide 43/58




@/ Conclusions (1)

* The three NU-WRF simulations (WRF24,
WRF12 and WRF04) commonly show less
frequent short-duration downpour
events.

« Spectral nudging effect is not significant in
the joint probability distribution function of
precipitation peak intensity and duration.

* The effect of cumulus parameterization
schemes is smaller than horizontal
resolution.
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Conclusions (2)

In the Great Plains, WRF04 can simulate the most
similar rainfall characteristics to Stage IV and GPM at its
original grid points. The overlap ratios between WRF04
and the observations are similar to those within the
observations.

Added value of high-resolution simulations: lost
Information when spatially or temporally averaging high-
resolution data.

In other words, WRFO04 run’s value is allowing us to fully
utilize high-resolution observation datasets (Stage IV
and GPM) as they are.

Without the full 11 years (2000-2010) of simulations or
observations, we can still show the added value of
WRFO04 simulation with the uncertainty due to temporal

sampling. Slide 45/58



« Introduction

« Systematic evaluation of CORDEX RCMs using
the Regional Climate Model Evaluation System

« Use cases of RCMES
— Evaluation of hourly rainfall characteristics in RCM
simulations

« Toward the model evaluation of the future

NASA’'s Computational Modeling Algorithms and Cyberinfrastructure program will support
these two projects to further improve RCMES.

— Combining multiple metrics into one: multi-objective
optimization
— Multi-resolution investigation of climate models
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Evaluation of the annual-mean surface insolation

using RCMES
satellite-based five models
observation

E g2

Multi-model .

ensembles
(ENS), including
equally weighted
multi-model
averages,
generally show
better skill than
a single model.

ENS= Z?:l Cl)l'Xi ,
imiw; =1

16

-16

multi-model ensemble
(An arithmetic mean
of the five models)

—24

—32
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How to combine multiple evaluation

b)) Global (zonal maan)

metrics into one?

his =

M’Ej# —+ -

o

pustl

E% -l -
ittt

2993022400 23BTERITO
EE%’%E%%%& g .
g % °5

« Trade-offs between metrics
* Representativeness and meaningfulness of the combined metrics is key.

0.5
0.4
0.3
0.2
.1

=0.1
0.2
=.3
-0.4
0.5

Starisnd Denation
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Conventional approach:

@ evaluation => multi-model ensemble

n climate models
Model 1: M,(x,y,t)

Model 2: M,(x,y,t)

Model 3: M(x,y,t)

Model n: M (x,y,t)

Evaluation
metric

Score,

Score,

Score,

Score,

a weighted
multi-model ensemble

Ens(z,y,t) sz i(z,y,t)

iwz—l

This is a process of building a multi-
model ensemble based on model
evaluation result.
ex) If Model 3 shows better
performance against observations
than Model 2, w; > w,.
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@ X Evaluation of multi-model ensembles

« Let's assume that we evaluate model to find the best
weighted multi-model ensemble.
* [w; w, w,] are random numbers between 0 and 1.

Ens(z,y, M (2,9, 1 wi =1
ns(x,y,t Zw i(x,y,t) ;

* By changing [w, w2 __w,], we can calculate scores
of multiple evaluation metrics for each Ens(x,y,t).

_WI
0.8*M, + 0.15*M,+0.05*M _0.7 could be
Interpreted as

0.3*M; + 0.60*M,+0.1*M, 0.5 01 .. 05 combined
best scores - metrics for the

0.1*M; + 0.2*M,+0.7*M, 0.9 0.8 .. 0.7 three mOde;ch;eSO/%



How to Estimate [w,", w,, ..., W, ]
| (weighting factors for the best ensemble)?
=> Multi-Objective optimization

« The objective optimization is a mathematical process of
finding the best solution involving objective functions to

be optimized simultaneously. ® . ideaiopimum 303l Minimize
x ‘ Objective 1 price and
« Multi-objective optimization§ S ¢ @ommuting time!
has been applied in many + ¢ K
fields of science, economics 2 Solution ¢
and engineering' E ¢ Ideal Optimum
$ betteoo Objective 2
O
* |n climate model evaluation, _ price
— solution: weighting factors B

In most of cases, there does not exist a
— objective functions: model single solution. In general, there exist a

evaluation metrics number of Pareto optimal solutions.
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Example) near surface air temperature in San Francisce
[1980-2003, monthly averaged in December] '

Monthly averaged surface air temperature [December, SF]

14

12}
10|
sl

temperature [C]

4

—19?:0RU (obs. )1985 Moldgeglol 19£Ia\/SlodeI 2 =020 Model 3
S Vetric 1 ias | Metric 2 RMISE
Model 1 (M1) -0.25 1.67
Model 2 (M2) -1.74 3.90
Model 3 (M3) -0.78 1.19

« What about the bias and RMSE of weighted

ensemble time series?

Ens(t) = w1 X M1(t) + w2 x M2(t) + w2 X M3(t)  gjige 5258



better
RMSE

Optimized (minimized |bias| and RMSE )

Weighting Factors [w,, w,, w,]

4.5 .

* Model 1
4.0f * Model 2
35| ’ * Model 3 |

\ «*s Pareto front
3.0/
2.5}
2.0}
1.5}
1.0}
020 ~1.5 ~1.0 —05
bias
better

—)

o
o

« Each grey point

weighting factor

© o © © o o o o
N S T I e - T - -

o
o

re

presents the bias

and RMSE of one
combination of the

th

ree models.

standard deviation of
N w, values (red dots)

=

k=1 @1(])

" mean pf N

" (ted dots)

), values

Model 1 Model 2 Model 3




Big Data challenges of the optimization

« The bias in the example is a linear metric.
For example, a bias of a model ensemble (ENS = > ", w;M;) is same as
weighted average of each model (M;)’s bias.

 However, most of popularly used metrics are not linear. So
the metric scores for each simulation, valuable information
as they are, can not be used to find the best (optimized)

ensemble.
M 0.9 0.3 ... 04 Ensl 0.4
M, 0.5 0.5 ... 0.3 Ens2 0.3 0.3 ... 0.7
M, 0.95 0.8 ... 0.5 Qns N 0.6 0.6 ... 04 j
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« Introduction

« Systematic evaluation of CORDEX RCMs using
the Regional Climate Model Evaluation System

« Use cases of RCMES
— Evaluation of hourly rainfall characteristics in RCM
simulations

« Toward the model evaluation of the future

NASA’'s Computational Modeling Algorithms and Cyberinfrastructure program will support
these two projects to further improve RCMES.

— Multi-resolution investigation of climate models

— Combining multiple metrics into one: multi-objective
optimization
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Motivation

. E  high resolution low resolution

)

There is a strong need for the development and application
of infrastructure for observation-based evaluations of spatial

patterns in key climate variables simulated with various
spatial resolutions.
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@/ Hierarchical Equal Area isoLatitude Pixelizatiol
(HEALPix, https://healpix.jpl.nasa.gov/)

« All HEALPIx grid pixels have exact equal areas regardless of
their geographical locations and resolutions.

« Geographical coordinates of HEALPIx pixels are fixed, and
higher resolution pixels are hierarchically nested within lower
resolution pixels.

« Generating low-resolution data from high-resolution data on
HEALPIXx grids is a simple and efficient averaging process
that utilizes their unique hierarchical data structure. Slide 57/58



Case study: fine-scale (< 10 km) variability of

long-term temperature trends

observed temperature trend in ERA interim (80 km)
summer 1979-2012 [K/decade]
(resolution 5 km)

—0.45 —0.30 -0.15 0.00 0.15 0.30 0.45

downscaled by CRCM

—045 -030 -0.15  0.00




