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Outline

• Introduction

– NASA’s downscaling assessment

• Systematic evaluation of CORDEX RCMs using 

RCMES

• Use cases of RCMES

– Evaluation of hourly rainfall characteristics in RCM 

simulations

• Toward the model evaluation of the future

– Combining multiple metrics into one: multi-objective 

optimization

– Multi-resolution investigation of climate models
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Dynamical Downscaling

Use a RCM much higher spatial resolution and 

possibly improved physical process representation 

over the area desired for impacts assessment with the  

boundary values from the GCM

Regional Climate Model

courtesy of Duane Waliser and Jonathan Case images from http://www.cordex.org/

images from http://climate4impact.eu



Slide 5/58

• High resolution is thought to be crucial for the 

accurate representation of some 

processes/phenomena.

• Downscaling assessment questions:

– Under ideal forcing conditions (e.g. high-quality re-

analyses), how good are RCMs at replicating important 

weather and climate processes/phenomena?

– Under what conditions does downscaling (RCMs driven by 

GCMs) give valid results?

– Do high resolution RCMs (5km or finer) offer anything that 

can’t be obtained via coarser resolution GCMs (25km or 

coarser)?

Downscaling Assessment by Multi-NASA Centers 
(JPL, GSFC, MSFC, AMES)

courtesy of Duane Waliser and Jonathan Case



Slide 6/58

I. NASA Unified-WRF (NU-WRF) with MERRA-2 

six-hourly reanalysis boundary conditions

• CONUS domain, resolutions: 24 km, 12 km, 4 km

• Characterize fidelity of fine-grid RCM for 

important processes/phenomena.  

A) Evaluate fine-grid: Score = RCM

II. NASA GEOS-5 Replay mode constrained by 

MERRA-2

• Global domain, resolution: 12.5 km

B) Evaluate fine-grid GCM: Score = fGCM

Types of Simulations

C) Evaluate coarse-grid GCM: Score = cGCM

D) Compare A), B) and C): 

Compare RCM, fGCM and cGCM

courtesy of Duane Waliser and Jonathan Case

images from http://rcmes.jpl.nasa.gov
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Used together, Scores RCM, fGCM and cGCM

quantify the value of dynamic downscaling for the 

given process/phenomenon. 

Dynamic downscaling of little/no value.

Assessing the Value of Dynamical Downscaling

HiLo

fGCMcGCMRCM

Dynamic downscaling of high value.

HiLo

fGCMcGCM RCM

courtesy of Duane Waliser and Jonathan Case
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Outline

• Introduction

• Systematic evaluation of CORDEX RCMs using 

the Regional Climate Model Evaluation System
– The following slides are provided by Alexander Goodman at JPL

– Lee et al. (2018), Regional Climate Model Evaluation System 

(RCMES) powered by Apache Open Climate Workbench (OCW) 

v1.3.0, in preparation. 

• Use cases of RCMES

– Evaluation of hourly rainfall characteristics in RCM 

simulations

• Toward the model evaluation of the future

– Combining multiple metrics into one: multi-objective 

optimization

– Multi-resolution investigation of climate models
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The Regional Climate Model Evaluation System 
(RCMES, http://rcmes.jpl.nasa.gov)

• Joint collaboration:  JPL/NASA, UCLA

• Python-based open source software powered by the 

Apache Open Climate Workbench library
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Regional Climate Model Evaluation System
: Motivation & Goals

• Make observation datasets, with some emphasis on satellite data, more 

accessible to the regional climate modeling community.

• Make the evaluation process for regional climate models simpler, quicker 

and physically more comprehensive. 

• Provide researchers more time to spend on analysing results and less 

time coding and worrying about file formats, data transfers, etc.

• Quantify model strengths/weaknesses for development/improvement 

efforts.

• Improved understanding of uncertainties in predictions.

GOALS

BENEFITS

RCMES
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High-Level Architecture

Regional Climate Model Evaluation System

Extract OBS data Extract model data

User Input 

Regridder
Put the OBS & model data on the same spatial grid

Metrics Calculator
(Calculate evaluation metrics)

Visualizer
(Plot the metrics)

Use the re-gridded data for 
user’s own analyses and 

visualization.

Data extractor to netCDF

obs4MIPs
Over 30 Satellite 

variables on ESGF

Other 
Data 

Centers

Local 
Disk

RCMES 
Observational 

Database
(e.g., TRMM, CRU, 

UDEL)

Observation for Evaluation

Spatial Boundaries
Temporal Boundaries & Resolution

ESGF
Several Models

(e.g. CMIP5, CORDEX)

Other 
Data 

Centers

Model data for Evaluation

Local 
Disk

RCMES captures the 
entire workflow.

Another user can reproduce the same 
results using the captured workflow.

(a configuration file)

(a configuration file)
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A Systematic Evaluation Of CORDEX 
Simulations Using Obs4MIPs

● Make it easy to perform systematic evaluations with CORDEX 

domains, models and variables
- Utilize the Regional Climate Model Evaluation System 

● Leverage NASA satellite observational datasets in evaluations 
- Utilize the Observations for Model Intercomparisons Project (Obs4MIPs)

- Evaluate the simulate variables other than temperature and precipitation

● Increase communication and collaboration between CORDEX 

domains

Leverage NASA-sponsored 
RCMES and NASA- co-

sponsored obs4MIPs to 
benefit WCRP/CORDEX

GOALS
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The multi-model, multi-variable evaluation against satellite 
observations from obs4MIPs over the 14 CORDEX domains 
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Why do we need “Systematic 
Evaluation”?

Season

Domain

Observations

Models

● This CF file (namelist file) 
is necessary to run each 
evaluation combination 
(CORDEX Domain, Season 
and Variable), forming a 
large “evaluation matrix”.

● 14 variables x 13 domains 
x 3 seasons x ~10 models > 
5000 evaluations

● Three input parameters
1. CORDEX domain name
2. obs. data location
3. model data location
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QuikSCAT Zonal Sea-Surface Wind (m/s) (summer)

Europe
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MODIS Total Cloud Fraction (%) (winter)

North America
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TRMM Precipitation (mm/month) (annual)

Africa

• Initial Evaluations have focused on the three domains (North America, 

Europe, and Africa) with the most simulations on the ESGF.

• Analyze and post remaining evaluations with simulations (not on ESGF 

but) made available to us (e.g. East Asia).

• We will publish these results on the RCMES website.
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Outline

• Introduction

• Systematic evaluation of CORDEX RCMs using 

the Regional Climate Model Evaluation System

• Use cases of RCMES

– Evaluation of hourly rainfall characteristics in RCM 

simulations 
Lee et al. (2017), Evaluating hourly rainfall characteristics over the U.S. Great Plains in 

dynamically downscaled climate model simulations using NASA-Unified WRF, JGR.

• Toward the model evaluation of the future

– Combining multiple metrics into one: multi-objective 

optimization

– Multi-resolution investigation of climate models
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Hourly Precipitation [mm/hr] datasets
over the Great Plains in summer (JJA)

Resolution Period

Observations

Stage IV 4 km, hourly 2002-2010

GPM 0.1o, 30 minutes 2014-2015

NU-WRF with spectral nudging
WRF24 24 km, hourly 2002-2010

WRF12 12 km, hourly 2002-2010

WRF04 4 km, hourly 2000-2004

GEOS replay

GEOS 12.5 km, hourly 2002-2009

11: Central Plains

12: Southern Plains

10: Northern Plains

from [Bukovsky 2011]
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Challenges in evaluating 
high-resolution model output

• The high-resolution climate simulation results from 

GEOS and NU-WRF are massive and stored on the 

NASA Center for Climate Simulation (NCCS) servers at 

Goddard.

Model resolution Data size (two-dimensional variables only)

24 km 560 G

12 km 2.2 T

4 km (expected to be more than 8 Terabytes)

• Conventional model evaluation techniques require 

regridding of datasets.

• B4 simulation is only available for five years (2000 -

2004). GPM data became available in 2014. 
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Objectives

• Evaluate the NU-WRF and GEOS simulations 

using a metric which

– does not require transfer of massive datasets,

– does not require regridding of original output,

– highlights advantages of high-resolution simulations.

• When it rains at somewhere in 

the Great Plains, would there be 

a probability density function to 

forecast how 

(strong/long/much) it will rain?
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Definition of wet spell duration [hours] and peak 
rainfall [mm/hr] [Kendon et al., 2014] 

half-hourly GPM precipitation 

(at Lat.=40.25N & Lon.=98.15W on June 27th and 28th, 2014) 

spell duration

(spell duration, peak intensity) over a season 

at every grid points in a region of interest

joint 

distributions 

peak intensity
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A Joint Probability Distribution Function (JPDF) 
of Rainfall Duration and Intensity 

Σp(duration, intensity)=100 %

x-axis: duration

y-axis: peak intensity

color: probability 

density [%]
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What is the added value of high-
resolution RCM simulations? 

• from Figure 4 in Kendon et al. [2014]: model biases in the 

joint probability distribution of wet spell duration (x-axis) 

vs. peak intensity (y-axis). 

• The 1.5 km model simulates more realistic hourly rainfall 

characteristics including extremes. 

Resolution: 12 km Resolution: 1.5 km

[RCM’s joint histogram] – [observed joint histogram]
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Comparison of two JPDFs

Observation

Model

• As a measure of similarity between 

two joint PDFs, the overlap ratio 

was calculated (0%: no overlap, 

100%: perfect overlap).

Model - Observation Overlap 
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Joint PDF for each dataset (summer: JJA)

: from precipitation data at all grid points in the Northern Plains

Stage IV WRF24 WRF12

WRF04 GEOS GPM
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Comparison of JPDFs: 
Northern Plain, Summer

(model – Stage IV)

Stage IV WRF24 WRF12

WRF04 GEOS

• Less frequent 

short-duration 

downpour 

events in both 

NU-WRF and 

GEOS regardless 

of resolutions.
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Overlap of the joint probability functions of rainfall 
duration and peak intensity
(observation data: Stage IV)

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF24 70.0 67.4 61.6

WRF12 79.3 78.1 74.4

WRF04
(2000-2004)

83.9 81.2 82.3

GEOS
(2002-2009)

63.8 51.4 29.8
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Comparison of JPDFs: 
Central Plain, Summer

(model – GPM)

GPM WRF24 WRF12

WRF04 GEOS
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Overlap of the joint probability functions of rainfall 
duration and peak intensity

(observation data: GPM IMERG)

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF24 67.7 62.3 57.3

WRF12 77.2 72.3 69.6

WRF04
(2000-2004)

82.7 76.8 76.5

GEOS
(2002-2009)

72.1 60.6 37.9

MERRA2 38.1 29.4 17.9
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Spectral nudging effect
(observation data: Stage IV)

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF24, 600 km 70.0 67.4 61.6

WRF24, 2000 km 69.6 67.2 62.2

WRF24, no nudging 65.8 67.6 63.8

WRF12, 600 km 79.3 78.1 74.4

WRF12, 2000 km 79.5 78.5 75.3

WRF12, no nudging 74.1 76.6 75.4
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Cumulus parameterization effect
(observation data: Stage IV)

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF24, Grell 3-D ensemble 70.0 67.4 61.6

B24, Bretts-Miller-Janjic 57.1 54.4 52.5

B24, New Kain-Fritsch 62.2 57.9 55.1

B24, New simplified Arakawa-Schubert
69.8 72.0 70.3

WRF12, Grell 3-D ensemble 79.3 78.1 74.4

WRF04, Grell 3-D ensemble 83.9 81.2 82.3
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Issues

• The difference in number of samples. For the 

Northern Great Plains,

– WRF24: 1829 grid points

– WRF12: 7296 grid points

– WRF04: 65732 grid points

• The difference in data periods:

– Stage IV, WRF24 and WRF12: 2002-2010

– WRF04: 2000-2004

– GPM: 2014-2015

• The difference between Stage IV and GPM
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Remapping Stave IV data onto 
WRF12 and WRF24 grid points

B12 grid points

Stage IV grid points

• H0: At any grid point, B24 

(or B12) can simulate the 

precipitation spatially 

averaged over  nearby 

Stage IV grid points.

• Aggregate of Stage IV 

data near each B12 (or 

B24) grid point and 

calculate average.
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Comparison with averaged Stage IV

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF24 70.0->82.3 67.4->81.6 61.6->76.8

WRF12 79.3->84.6 78.1->82.3 74.4->79.3

WRF04
(2000-2004)

83.9 81.2 82.3

* all NU-WRF results with spectral nudging, 600 km

• WRF12 and WRF24 show reasonable agreement 

with the aggregated Stage IV data at the coarse 

resolution grid points.
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Lost information due to temporal averaging (1) 
[Stave IV, JJA in 2002, Northern Great Plains]

Original JPDF from 
hourly data

• Even the joint PDFs with the same bin widths look totally 

different: averaging artifacts.

• ex) rainfall at 00, 02, 04, 05 UTC : two 

events for one hour, one event for two 

hours => one event for six hours
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Lost information due to temporal averaging (2) 
[half-hourly GPM precipitation] 

• Higher frequency variability in precipitation than an 

hour or less have potential to be better reproduced 

by RCMs with high resolution (WRF04) than low 

resolution simulations (WRF12 and WRF24).

Can this be added 

value of high 

resolution 

simulations?
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Lost information due to spatial upscaling of high-
resolution datasets [GPM, July 08/2014, 01:30 AM]

A. GPM 
precipitation (0.1°)

A-B. GPM precipitation 
aggregated into B24 grids

B. fine-scale 
spatial pattern

• By upscaling high resolution data into low resolution grid points, we lose 

fine-scale spatial information that is related to high frequency variability. 

• The JPDF of rainfall duration and peak intensity from hourly data without 

regridding captures valuable information from high frequency variability 

and fine-scale spatial pattern.

• Satellite observations with high temporal and spatial resolutions such as 

GPM will highlight added value of high resolution simulations. 
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Issues

• The difference in number of samples. For the 

Northern Great Plains,

– WRF24: 1829 grid points

– WRF12: 7296 grid points

– WRF04: 65732 grid points

• The difference in data periods:

– Stage IV, WRF24 and WRF12: 2002-2010

– WRF04: 2000-2004

– GPM: 2014-2015

• The difference between Stage IV and GPM
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Uncertainty of the overlap ratio due to 
temporal subsampling 

• H0: Uncertainty of the overlap ratio between 

WRF04 and Stage IV can be estimated by 

comparing subsampled JPDFs from WRF12 and 

WRF24 with Stage IV JPDF.

• Sampling 2002-2010 without replacement:

for sample_size = 1, 8

for number_sample = 1, 100

sub_jpdf = CALC_JPDF(         )

overlap_ratio = COMPARE(stage4_jpdf, sub_jpdf) 

• ex) (2002, 2003, 2005) (2004, 2007, 2008) (2002, 2009, 

2010) ... (2002, 2004, 2010)
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• The uncertainty is defined as standard deviation of the 

evaluation metric values (overlap ratio) for random subsamples.

• The uncertainty of the overlap ratio decreases by building a 

JPDF using output  for a longer period.
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Issues

• The difference in number of samples. For the 

Northern Great Plains,

– WRF24: 1829 grid points

– WRF12: 7296 grid points

– WRF04: 65732 grid points

• The difference in data periods:

– Stage IV, WRF24 and WRF12: 2002-2010

– WRF04: 2000-2004

– GPM: 2014-2015

• The difference between Stage IV and GPM
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Stage IV [2002-2010]

Stage IV [2014] GPM [2014]

Northern: 82.1 %
Central    : 87.4 %
Southern: 80.9 % 

Northern: 81.0 %
Central    : 84.5 %
Southern: 84.6 %

Northern: 83.8 %
Central    : 82.4 %
Southern: 84.7 %

[%] Northern 
Plains

Central 
Plains

Southern 
Plains

WRF04 & Stage IV 83.9 81.2 82.3

WRF04 & GPM 82.7 76.8 76.5
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Conclusions (1)

• The three NU-WRF simulations (WRF24, 

WRF12 and WRF04) commonly show less 

frequent short-duration downpour 

events.

• Spectral nudging effect is not significant in 

the joint probability distribution function of 

precipitation peak intensity and duration.

• The effect of cumulus parameterization 

schemes is smaller than horizontal 

resolution.
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Conclusions (2) 

• In the Great Plains, WRF04 can simulate the most 

similar rainfall characteristics to  Stage IV and GPM at its 

original grid points. The overlap ratios between WRF04 

and the observations are similar to those within the 

observations.

• Added value of high-resolution simulations: lost 

information when spatially or temporally averaging high-

resolution data. 

• In other words, WRF04 run’s value is allowing us to fully 

utilize high-resolution observation datasets (Stage IV 

and GPM) as they are.

• Without the full 11 years (2000-2010) of simulations or 

observations, we can still show the added value of 

WRF04 simulation with the uncertainty due to temporal 

sampling.
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Outline

• Introduction

• Systematic evaluation of CORDEX RCMs using 

the Regional Climate Model Evaluation System

• Use cases of RCMES

– Evaluation of hourly rainfall characteristics in RCM 

simulations 

• Toward the model evaluation of the future
NASA’s Computational Modeling Algorithms and Cyberinfrastructure program will support

these two projects to further improve RCMES.

– Combining multiple metrics into one: multi-objective 

optimization

– Multi-resolution investigation of climate models
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Evaluation of the annual-mean surface insolation 
using RCMES

satellite-based 
observation

five models

multi-model ensemble
(An arithmetic mean 
of the five models) 

Multi-model 
ensembles 
(ENS), including 
equally weighted 
multi-model 
averages, 
generally show 
better skill than 
a single model.

ENS= σ𝑖=1
𝑛 𝜔𝑖𝑋𝑖 ,

σ𝑖=1
𝑛 𝜔𝑖 = 1
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How to combine multiple evaluation 
metrics into one?

[Glecker et al., 2008]

• The more metrics, the better.

• Trade-offs between metrics

• Representativeness and meaningfulness of the combined metrics is key.
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Model 1: M1(x,y,t)

Model 2: M2(x,y,t)

Model 3: M3(x,y,t)
.
.
.

Model n: Mn(x,y,t)

Evaluation 
metric

Score1

Score2

Score3

Scoren

a weighted 
multi-model ensemble 

Conventional approach:
evaluation => multi-model ensemble

This is a process of building a multi-

model ensemble based on model 

evaluation result.

ex) If Model 3 shows better 

performance against observations 

than Model 2, ω3 > ω2. 

n climate models
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Evaluation of multi-model ensembles

• Let’s assume that we evaluate model to find the best 

weighted multi-model ensemble. 

• [ω1, ω2, …, ωn]  are random numbers between 0 and 1. 

• By changing [ω1, ω2, …, ωn] , we can calculate scores 

of multiple evaluation metrics for each Ens(x,y,t).
Metric 

1
Metric 

2
… Metric 

k

0.8*M1 + 0.15*M2+0.05*M3 0.2 0.3 … 0.6

0.3*M1 + 0.60*M2+0.1*M3 0.5 0.1 … 0.5
… … … … …

0.1*M1 + 0.2*M2+0.7*M3 0.9 0.8 … 0.7

0.1, 0.2 and 

0.7 could be 

interpreted as 

combined 

metrics for the 

three models.
best scores
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How to Estimate [ω1
*, ω2

*, …, ωn
*] 

(weighting factors for the best ensemble)?
=> Multi-Objective optimization

• The objective optimization is a mathematical process of 

finding the best solution involving objective functions to 

be optimized simultaneously.

• Multi-objective optimization 

has been applied in many 

fields of science, economics 

and engineering.

• In climate model evaluation, 

– solution: weighting factors

– objective functions: model 

evaluation metrics

In most of cases, there does not exist a 

single solution. In general, there exist a 

number of Pareto optimal solutions.

from http://www.noesissolutions.com/

b
et

te
r

better

price

d
is

ta
n

ce
 

fr
o

m
 w

o
rk

Goal: minimize 
price and 

commuting time!
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Metric 1: Bias Metric 2: RMSE

Model 1 (M1) -0.25 1.67

Model 2 (M2) -1.74 3.90

Model 3 (M3) -0.78 1.19

• What about the bias and RMSE of weighted 

ensemble time series?

Example) near surface air temperature in San Francisco 
[1980-2003, monthly averaged in December]
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Optimized (minimized |bias| and RMSE ) 
Weighting Factors [ω1, ω2, ω3]

better

b
et

te
r

standard deviation of 
N ω1 values (red dots)

mean of N 
ω1 values
(red dots)

• Each grey point 

represents the bias 

and RMSE of one 

combination of the 

three models.
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Big Data challenges of the optimization

• The bias in the example is a linear metric.

• However, most of popularly used metrics are not linear. So 

the metric scores for each simulation, valuable information 

as they are, can not be used to find the best (optimized) 

ensemble.

Model Metric 1 Metric 2 … Metric k

M1 0.9 0.3 … 0.4

M2 0.5 0.5 … 0.3

… … … … …

Mn 0.95 0.8 … 0.5

Ens. Metric 1 Metric 2 … Metric k

Ens 1 0.4 0.2 … 0.1

Ens 2 0.3 0.3 … 0.7

… … … … …

Ens N 0.6 0.6 … 0.4
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Outline

• Introduction

• Systematic evaluation of CORDEX RCMs using 

the Regional Climate Model Evaluation System

• Use cases of RCMES

– Evaluation of hourly rainfall characteristics in RCM 

simulations 

• Toward the model evaluation of the future
NASA’s Computational Modeling Algorithms and Cyberinfrastructure program will support

these two projects to further improve RCMES.

– Multi-resolution investigation of climate models

– Combining multiple metrics into one: multi-objective 

optimization
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Motivation

There is a strong need for the development and application 
of infrastructure for observation-based evaluations of spatial 
patterns in key climate variables simulated with various 
spatial resolutions. 
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Hierarchical Equal Area isoLatitude Pixelization 
(HEALPix, https://healpix.jpl.nasa.gov/)

• All HEALPix grid pixels have exact equal areas regardless of 

their geographical locations and resolutions.

• Geographical coordinates of HEALPix pixels are fixed, and 

higher resolution pixels are hierarchically nested within lower 

resolution pixels.

• Generating low-resolution data from high-resolution data on 

HEALPix grids is a simple and efficient averaging process 

that utilizes their unique hierarchical data structure.
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Case study: fine-scale (< 10 km) variability of 
long-term temperature trends

observed temperature trend in 

summer 1979-2012 [K/decade] 

(resolution 5 km)

ERA interim (80 km)

downscaled by CRCM

(44 km) (22 km) (11 km)


