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NASA Psyche Mission: Journey to a Metal World

The NASA Psyche mission will explore, for the first time ever, a world made
primarily of metal. There are many engineering challenges to developing a
spacecraft to explore Psyche. The participants will be divided into teams to
participate in a mock spacecraft design trade study to experience how the
different engineering disciplines engage each other in developing a
spacecraft.



Psyche Video




Simulation Challenge

NASA has just approved funding for $120M secondary spacecraft for the
Psyche Mission. Your task, if you accept it, is to design a secondary
spacecraft with a minimum of 3 science instruments with minimal impact
to the primary mission.

Ground Density/Surface Topology: Unknown
Atmosphere Density: Unknown

Rotational Stability: Unknown

Magnetic Interference: Unknown



Impactor vs Lander

* Deep Impact
+ Scientific Instrument(s)

High-Resolution Instrument
(HRI)

Medium-Resolution Instrument
(MRI)

Impactor
Impactor Target Sensor (ITS)

Image: nasa.gov

* InSight

« Scientific Instrument(s)

Seismic Experiment for Interior
Structure

Heat Flow and Physical
Properties Package
Auxiliary Payload Sensor Suite

Instrument Deployment System
and Laser Retroreflector

Image: jpl.nasa.gov



Group Work

Design your subsystem for the selected approach
Power and Communications
- Eric Aguilar
GNC and Payload
+ David Henriquez
Mechanical and Prop
* Luis Dominguez
Computer Science
« Paul Ramirez



For Information on the Real Psyche Mission

& - C @ https://psyche.a

e G-

exploring a world made
but of metal.

§
https://psyche.asu.edu/

Image: ASU/Peter Rubin/JPL




Subsystem
Considerations



Power Considerations

* Power
- Battery
- Battery
* Energy storage
capability
* Mass

* Thermal Battery
. Energy_storage

capabllity
* Mass
- RTG
* Power generation
* Mass

« Solar Power
* Power generation
* Mass

Heat Source Liner

Cooling Tubes

Image: jpl.nasa.gov

Thermoelectric 27
Modules

Mounting Interface

Image: mars.nasa_.fgv

Image: jpl.nasa.gov
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Positive terminal

Thermal Insulation

Heat
Distribution
Block

8 GPHS
Module Stack

Thermal Insulation

Image: micro.magnet.fsu.edu

Electric
match

Outer
case

Thermal Battery


https://www.google.com/imgres?imgurl=https://qph.fs.quoracdn.net/main-qimg-0c39134a3f1debc04794e4e3c1d7dfb1&imgrefurl=https://www.quora.com/Which-are-the-parts-of-a-missile-that-degrades-causing-missiles-to-have-shelf-lives&docid=p65sbZW2yAuXfM&tbnid=F6Vn5thhPQSUJM:&vet=10ahUKEwis2ciT3PfdAhWHjlQKHVhFDx0QMwivASgTMBM..i&w=250&h=277&client=firefox-b-1-ab&bih=751&biw=1440&q=thermal%20battery&ved=0ahUKEwis2ciT3PfdAhWHjlQKHVhFDx0QMwivASgTMBM&iact=mrc&uact=8
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Power Options
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Communications and Control Considerations

- Data Rate
* Compressed/Uncompressed
- Antenna type

« UHF
« Xband

CPU Power
CPU

Thrustor control
Gimbal interface
Heaters

Comm interface
Battery Control



Mechanical & Thermal Considerations

 Mechanical

* Primary Structure

+ Radiation environment makes lander
structure significantly heavier Artist's Concept

« Secondary Structures

+  Structures for mounting other
equipment

« Payload Accommodations
* Penetrator mass is large
* Thermal
+ Blanketing
« HTR’s
* PRT’s
+  Power Considerations

Image: jpl.nasa.gov



Credit: Omega Engineering

Mechanical & Thermal A
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GNC/Prop Considerations

* Penetrator Mass Acceleration
Rocket

* Inertial Measurement Unit

« Reaction Control System

* Position Control
* Reaction Speed
» Accuracy/Precision



' Guidance, Navigation, & Control
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_’ Guidance, Navigation, & Control
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V/ ‘Guidance, Navigation, & Control

............

Impactor

/— Launch Vehicle Adapter

.! /— Debris
Shields

‘P“:@

Image: NASA

Pointing Knowledge: 150 urad 3 axes 3-sigma
Mass: 100 kg
Propulsion/RCS:

25 m/s divert; 1750 N-s RCS impulse

Uses 4 Hydrazine Thrusters

Four 22 N thrusters firing in pulses varying in length from
.015 to 0.5 second each.

Telecom Band:
S-Band 64 Kbps
Mission Duration: 24 hr

Crodit: Wikimodia

Image: NASA

Pointing Knowledge: 150 urad 3 axes 3-sigma
Mass: 350 kg

Propulsion/RCS:
*  Uses 20 Hydrazine Thrusters
«  Twelve 293 N thrusters control descent
*  Four 15.6 N thruster for TCM

Telecom Band:
*  UHF rates to 8 Kbps to 128 Kbps
«  X-Band 2.0 Kbps

Mission Duration: 2,208 hr



Payload
Impactor

¢ Mission Duration: 24 hr

* High Resolution Instrument (HRI) — Ball Aerospace
« Telescope with a 30 cm aperture, 10.5 m focal length, 2 mrad FOV
« Infrared (IR) spectrometer, and a multi-spectral CCD camera
* 2 m per pixel at 700 km
* Medium Resolution Instrument (MRI) — Ball Aerospace
«  Backup for the (HRI)
«  Telescope with a 12 cm aperture, 2.1 m focal length, 10 mrad FOV
*  Visible spectrum CCD camera
* 10 m per pixel in the visible spectrum at 700 km

+ Impactor Targeting Sensor (ITS) — Ball Aerospace
*  Primary targeting camera.

* A duplicate of the MRI but without the filter wheel, the ITS will be
used to navigate the impactor to the comet.

Image: NASA/JPL



Payload

Mission Duration: 2,208 hr

Robotic Arm (RA) - JPL
+  2.35 meters long with an elbow joint in the middle, allowing the arm to trench about 0.5m;
to scope material into the TEGA & MECA
Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) — JPL

+ A Wet Chemistry Lab for characterizing the soil samples by dissolving small amounts of soil in R w
water, to determines the pH, the abundance of minerals such as magnesium and sodium cations Image: NASALPL
or chloride, bromide and sulfate anions, as well as the conductivity and redox potential. Looking
through a microscope, MECA examines the soil grains to help determine their origin and
mineralogy.

Robotic Arm Camera — U of Arizona and Max Planck Institute, Germany

*  Mounted just above the scoop on the RA, the instrument provides close-up, full-color images of
surface in the vicinity of the lander, prospective soil samples in the trench dug by the RA.

Surface Stereo Imager (SSI) — U of Arizona
* High-resolution, stereo, panoramic images of the landing site " o s, Dot " Soence Systoms
Thermal and Evolved Gas Analyzer (TEGA) — U of Arizona & U of Texas, Dallas
* A high-temperature furnace and mass spectrometer instrument to analyze soil samples.
Mars Descent Imager (MARDI) - Malin Space Science Systems
*  Provides hi-res images of the topology around the landing zone
Meteorological Station (MET) — Canadian Space Agency
*  Records temperature, pressure and light detection; includes a ranging (LIDAR) instrument.

Lander

o
o~
v

Image: Canadian Image: U of Arizona
Space Agency



Software Considerations

Flight

« Common Components

Command dispatching/sequencing
Telemetry processing & storage
Ground interfaces

File Uplink and Downlink

« Specific Hardware

7/21/20

Device drivers
Operating system adaptations

Guidance, Navigation and Control
(GNC)

Radios

Processing Constraints
* Real Time, Near Real Time, Offline or
Batch

»  Automated, Autonomous or Human

- Hardware Availability
* Memory
- CPU
- GPU

TI MSP430
* 24K RAM
* 64K Flash

_ Rack Mount PC
_ * Quad-core Xeon
« 8GB RAM
* Hard disk
e e

Image: https://github.com/nasa/fprime/blob/master/docs/Architecture/FPrimeArchitectureShort.pdf

20 JPLUL



Flight Software

BAE RAD750 Cobham UT700
Memory 128 MB SDRAM, 256 kB SUROM *  Memory 64MB SRAM, 32MB MRAM
Radiation-hardness Total dose: >100 Krad (Si) * Radiation-hardness Total dose: >100 Krad (Si)
Performance >260 Dhrystone 2.1 MIPS at 132 MHz * Performance 95 Dhrystone MIPS at 132MHz
Power dissipation <10.8 W « Power dissipation 7.3 W Max
Rail temperature range -55°C to +70°C + Qualification level -35°C to +80°C

Image: BAE Systems Image: Cobham

7/21/20 21 JPL



Ground Software Planning

Tactical

© 0O | B westner Dispiay Loy X Chartes.
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Image: https://www.nasa.govi/sites/default/files/styles/full_width/public/thumbnails/image/onsight20181002b-16.jpg?itok=wjewaKOQ

Reconstruction or Simulation

Image: https://nasa.github.io/openmct/static/res/images/Open-MCT.Browse.Layout.Mars-Weather-1.jpg

Image: https://www-robotics.jpl.nasa.gov/images/EDLgui-br.jpg JPL
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