Exploring MARS with Rovers: MSL and what is M2020

Presented by M de la Torre, Work by Curiosity’s ENV science team & M2020 team
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Visiting Mars since 1976 a5 B




Missions to Mars since 2001

Jet Propulsion Laboratory
California Institute of Technology

Operational 2001-2015

5\

ot 2 Mars MAVEN
Reconnaissance
Mars Orbiter

Opportunity
__ Rover

- Follow the Water

Prepare for Future Human Explorers

2

Mars Orbiter
Mission (ISRO)

Curiosity
Rover
M F.ﬁ 2
Explore Habitability

|

Trace Gas
Orbiter (ESA)

|

2018 | 2020 | ,2022
AND BEYOND
Planning for
the Future
ExoMars
Rover (ESA)
Science
" n Rover
S & =
InSight o
<:___r;§l,." .‘ : - 4
| |
Seek Signs of Life




Jet Propulsion Laboratory
California Institute of Technology

Er

8

e?r‘hinellf life véér&se on Mars *

sosdietNN o AV

CLIMATE

derstand Martian climate processes

GEOLOGY

Determine how the surface and interior of Mars evolved

e ™

HUMANS ot
Prepare for human exploration s ,q{g EL i

9

EVOLVING THEMES




Rover Sizes and complexity have increased A@/ e e A Temcioy

b

_Spirit/Opportunit -
V(20040

" =
¢ -
-
(€ %) ¥
A Ve
) I »

v

5w = . Curiosity(2011) &
* Ppathfinder/ = Mars2020 (2020)
Sojourner(1997) .. -~




Jet Propulsion Laboratory
California Institute of Technology

Curiosity/M2020 rover size Comparison‘®/




Curiosity science payload (a5 R
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Curiosity/M2020 rover size comparison

Organic Check

Mteri e Cleans rock surfaces with a brush
aterial

e Places and holds the APXS and
MAHLI instruments

Sample
Observation
Tray

e Acquires samples of rock or soil
with a powdering drill or scoop

T cmRobotarm * Sieves the samples (to 150 um or 1
mm) and delivers them to
instruments or an observation tray

Extra Drill
Bits

e Exchanges spare drill bits
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Landing site: Aeolis Mons — Gale Crater | £ Al DR,

150-km Gale Crater contains a -'km hlg 'mound of stratif |e rock. trata in the
lower section of the mound vary in mineralogy and texture, suggesting that they may
have recorded environmental changes over time.




Mission Overview

LAUNCH CRUISE/APPROACH ENTRY, DESCENT & LANDING
* MSL Class/Capability LV * 7.5 month cruise * MSL EDL system: guided entry and
 Period: Jul/Aug 2020 - Arrive Feb 2021 powered descent/Sky Crane

* 16 x 14 km landing ellipse (range
trigger baselined)

* Access to landing sites +30° latitude,
<-0.5 km elevation

http://mars.jpl.nasa.gov/mars2020/
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SURFACE MISSION
* Qualified for one & half Mars year
» 20 km traverse distance capability

» Seeking signs of past life
» Returnable cache of samples
* Prepare for human exploration of Mars

10
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Artist’s Concept. NASA/JPL-Caltech
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Landing site: Aeolis Mons Jt Propulson Laboratary
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Mastcam mosaic of Mount Sharp, descent
rocket scours, and rover shadow
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Landing Site: AeOIiS Mons —_— Gale Crater Jet Propulsion Laboratory
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The ground scoured by Curiosity’s descent
rockets first revealed bedrock
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Landing site: Aeolis Mons — Gale Crater‘ @ Jet Propulsion Laboratory

Daytime

Enrichment

Methane abundance (ppbv)
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Curiosity measured a background methane abundance of

0.7 ppbv and a ten-fold enhancement that lasted ~ 60 sols |
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Landing site: Aeolis Mons — Gale Crater Na s R R

An Ancient Habitable Environment
at Yellowknife Bay

 The regional geology and fine-grained rock suggest that the
John Klein site was at the end of an ancient river system or
within an intermittently wet lake bed

 The mineralogy indicates sustained interaction with liquid
water that was not too acidic or alkaline, and low salinity.
Furthermore, conditions were not strongly oxidizing.

« Key chemical ingredients for life are present, such as carbon,
hydrogen, nitrogen, oxygen, phosphorus, and sulfur

 The presence of minerals in various states of oxidation would
provide a source of energy for primitive organisms
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Landing site: Aeolis Mons — Gale Crater NA

Notes on Organics

« This is the first-ever detection of a martian organic chemical.

|t took many analyses of rocks and soils, as well as additional
analyses of blanks and calibration standards on Mars and on Earth, in
order to verify this discovery.

« SAM detected simple hydrocarbon molecules in which some of the
hydrogen was replaced with chlorine. This could have happened on
Mars, or within the instrument, through reaction with perchlorate
compounds that are known to be widespread on Mars.

« Simple organic molecules do not require biology for their formation.
However, they are building blocks of life. More importantly, we now
can study what environments preserve organics on Mars’ surface,
increasing our ability to search for other life-related materials.

NN
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ENV observations on Gale Crater

Several Instruments are providing a picture of the near surface environment:

- REMS: pressure, Temperature, downwelling UV radiation,
Relative Humidity, Surface temperature, winds.

- ChemCam: atmospheric composition.

- MastCam: atmospheric opacities.

- DAN: subsurface Hydrogen

- RAD: high energy ionizing radiation.

- NavCams: atmospheric opacities, cloud and dustdevil tracking.
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Wider diurnal pressure cycle
Smaller difference between Spring and Autumn maxima due to near Equatorial location.
CO, cycle is reflected in pressure annual cycle.

Wave signatures also abundant during seasons with higher atmospheric dust. 28

2 Martian years of surface pressure
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REMS 1246 sols
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Surface skin temperature
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Surface Brightness T (K)
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Aerocentric Longitude L. (Until L 873)
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Wind tracking
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Wind tracking
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REMS UV obs (M Smith)

REMS UV
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e Six filters in UV from ~250-350 nm
 Mounted on rover deck, nominally view cone centered on nadir with 30° half-width
e Data returned all the time whenever REMS is collecting data
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REMS UV obs (M Smith)
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Dust Optical Depth at 345 nm

Observed radiance is direct
radiation from solar beam plus
diffuse radiation scattered
from sky (“sky brightness”)

Both direct solar beam and
diffuse radiation are sensitive
to aerosol optical depth (and
to other things to a lesser
extent)

REMS UV data can be used to
retrieve aerosol optical depth
lltaull
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REMS UV obs (M Smith)
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Mastcam tau is better, but REMS UV provides results every sol.
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Environmental processes: pressure
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Mean pressure values increase their variability to the dust season as detected by Mcam.

Average temperature of an atmospheric layer centered at z=-4470m is 213.5K if the
atmosphere were isothermal.

~ 12K colder than at the rover altitude. °
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Environmental processes: pressure
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Hydrological processes: search for frost

G Martinez, Icarus 2016

Sol 1234 Sol 1235 »50 SaLLZSG
W7 280 ————— — T T < T 1
260 | =7 o 1 260 | : 7 R 260 1 . b
g 210t 2 20t i g A0 :
g 220 q ’g’ 220 + 4 g 220 +
E 200 | 4 .]f§ . 5 200 | ! K e 1 g 200 | {. x 1 T ],} i
180’5%‘1“%*¥% T% lSOBiE%*¥¥_}f }l% 1so;i¥£@% “ ]H{
160 ———— 1 11 1 160 ——t— 160
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 g§ 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
IMST LMST LMST
On a few sols, like sol 1236, the surface skin 60 " Sol 1234 ——

Sol 1235 —e—
temperature T, crossed the threshold for frost 50 / Sol1236  + |
formation, Ty, short before sunrise. J \ _

— 10 Is.this.RH drop
s
2 —~ environmental or
The same threshold was also crossed on Sol 531. € A \ il ‘ A
P LT ;;&g\' instrumental effect?
- +
, : 20 Gt
Under study: could brines be forming? \L +
.{_
(J Martin-Torres et al. Nature-Geosci. 2014 founc 10 : f\‘ 7
a crossing of the threshold but RH has been . \Q i g ; gﬂ*
corrected downward since then; R Gough 2016) 0 2 4 6 8 10 12 14 16 18 20 22 24

LMST



Near Surface vs total column water vapor

Results from passive sky spectra (T Mcconocchie)

Water Vapor, uniform mixing assumed
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Summary

* Longest temperature and second longest pressure records on Mars since Viking.
e Diurnal and annual cycles characterized for different environmental variables.
 Warm equiatiorial latitude.

* Pressure responsive to CO, cycle, waves.

* Pressure tidal amplitudes respond to changes in opacity.

* Hydrological cycle characterized at seasonal scales and night time.

* Surface has crossed the thermodynamic threshold for frost formation.

* No dust devils detected.

* Exploring the interrelation of different variables.
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Landing site: Aeolis Mons — Gale Crater

{

i

he lower reaches
of the 5-km high Mount Sharp 42
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“Curiosity s Extended explore Mt. Sharp, ‘an emphasis
understanding the subset of habitable environments that preserve
organic carbon 4



Landing Site: AeOIiS Mons —_— Gale Crater Jet Propulsion Laboratory
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“Curiosity s Extended explore Mt. Sharp, ‘an emphasis
understanding the subset of habitable environments that preserve
organic carbon =
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Wait, there is more!
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Curiosity/M2020 rover size comparison
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M astca m-Z .. Jet Propulsion Laboratory

Mastcam-Z

A Geologic, Stereoscopic, and Multispectral Investigation for
the NASA Mars-2020 Rover Mission
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A view beneath the surface

RIMFAX
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What next? M2020
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: Enhanced ChemCam
efr | fte |

ChemCam Target: Beechey (Sol 19)
Power: 1 Gigawatt
5-spot raster, shots per spot: 50
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PIXL: Planetary
Instrument For

micro x-ray fluorescence
for elemental mapping
with sub-mm resolution

- " -
Detrital Pyritf

Fe,Mn,Ca-carbonate

‘\'/lw:‘“‘d .



Jet Propulsion Laboratory
California Institute of Technology

SHERLOC

SHERLOC: Scanning Habitable Environments with Raman &
Luminescence for Organics & Chemicals

Organic & Mineral
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INSTRUMENT DESCRIPTION:
* Upgraded sensor package and electronics unit serve as follow-on to REMS
— ICU and PS on RAMP
— 170-mm fixed and 396-mm switch-blade WS on RSM
— 5 ATSs (3 on RSM, 2 on rover body)
—  Thermal IR Sensor (TIRS), on RSM
— Humidity Sensor (HS), on RSM
— Radiation and Dust Sensor, including SkyCam, to image atmospheric dust
opacities & scattering, on rover deck
* Various power states can meet needs of all sol types
* 5.2 kg mass, with current protection plans

54



MEDA Project Objectives: Instrument Overview

|I||||||
|

INSTRUMENT DESCRIPTION (updates in red):
* Upgraded sensor package and electronics unit serve as follow-on to
REMS
— ICU and PS on RAMP
— 170-mm fixed and 396-mm switch-blade WS on RSM
— 5 ATSs (3 on RSM, 2 on rover body)
— Thermal IR Sensor (TIRS), on RSM
— Humidity Sensor (HS), on RSM
— Radiation and Dust Sensor, including SkyCam, to image
atmospheric dust opacities & scattering, on rover deck
* Various power states can meet needs of all sol types
- \la * 5.2 kg mass, with current protection plans
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Returned Sample Science (RSS) ‘@ et ropision taoratory
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M2020 candidate landing sites

COLUMBIA HILLS

» Carbonate, sulfate, and
silica-rich outcrops of
possible hydrothermal origin
and Hesperian lava flow

» Potential biosignatures
identified

* Previously explored by MER

NE SYRTIS

« Extremely ancient igneous,
hydrothermal, and
sedimentary environments

* High mineralogic diversity
with phyllosilicates, sulfates,
carbonates, olivine

* Serpentinization and
subsurface habitability?

» Extremely ancient igneous,
hydrothermal, and
sedimentary environments

* Crustal phyllosilicates,
carbonates, olivine,
Hargreaves ejecta

* Serpentinization and
subsurface habitability?

Jet Propulsion Laboratory
California Institute of Technology

MAWRTH VALLIS

« Abundant and diverse
phyllosilicates may preserve
organics

» Groundwater-fed system

with pedogenesis or in place
alteration?
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M2020 candidate landing sites

* Deltaic/lacustrine deposition
with megabreccia

* Evidence for hydrous
minerals from CRISM

» Extensively mapped for MSL

HOLDEN

* Deltaic/lacustrine deposition
with megabreccia

* Evidence for hydrous
minerals from CRISM

 Extensively mapped for MSL

Olivine +
Pyroxene

JEZERO

* Deltaic/lacustrine deposition
with Hesperian lava flow and
hydrous alteration

* Evidence for hydrous
minerals from CRISM,
including carbonates

Jet Propulsion Laboratory
California Institute of Technology

» Deltaic/lacustrine deposition
wtihin Valles Marineris

* Evidence for hydrous

minerals from CRISM,
including hydrated silica
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