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Equilibrium Climate Sensitivity (ECS)

* ECS is eventual warming from doubled atmospheric CO,

* Intergovernmental Panel on Climate Change (IPCC) 2013 report said
range 1.5—4.5 °C with a best estimate of 3 °C

* Let’s quickly summarise evidence then investigate the “historical
energy budget” calculation approach.
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Reviews, theory, combined lines of evidence

Don’t look at details!

Each bar is a study.
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Paleoclimate examples:
Look at what happened in the deep past.

This isnt my business, but it’s cool.



Climate Sensitivity Estimated
from Temperature Reconstructions
of the Last Glacial Maximum

Andreas Schmittner,™* Nathan M. Urban,? Jeremy D. Shakun,’ Natalie M. Mahowald,*
Peter U. Clark,” Patrick ]. Bartlein,® Alan C. Mix,* Antoni Rosell-Melé’

Assessing the impact of future anthropogenic carbon emissions is currently impeded by
uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon dioxide
doubling. Previous studies suggest 3 kelvin (K) as the best estimate, 2 to 4.5 K as the 66% probability
range, and nonzero probabilities for much higher values, the latter implying a small chance of
high-impact climate changes that would be difficult to avoid. Here, combining extensive sea and
land surface temperature reconstructions from the Last Glacial Maximum with climate model
simulations, we estimate a lower median (2.3 K) and reduced uncertainty (1.7 to 2.6 K as the 66%
probability range, which can be widened using alternate assumptions or data subsets). Assuming
that paleoclimatic constraints apply to the future, as predicted by our model, these results imply
a lower probability of imminent extreme climatic change than previously thought.

PERSPECTIVE

doi:10.1038/nature11574

Making sense of palaeoclimate sensitivity

PALAEOSENS Project Members*

Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equi-
librium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a
wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve
intercomparison of palaeoclimate sensitivity estimates in a manner compatible with eqmlibrmm projections for future
climate change. Over the past 65 million years, thJsreven]sachmatesensxtmty(mKW 'm?) 0f0.3-1.90r0.6-1.3at95% or
68% probability, respectively. The latter implies a warming of 2.2-4.8 K per doubling of atmospheric CO,, which agrees

with IPCC estimates.

SCIENCE ADVANCES | RESEARCH ARTICLE

CLIMATE CHANGE

Nonlinear climate sensitivity and its implications for
future greenhouse warming
Tobias Friedrich,* Axel Timmermann,' Michelle Tigchelaar,” Oliver Elison Timm,? Andrey Ganopolski®

Global mean surface temperatures are rising in resp to anth issi The mag-
nitude of this warming at equilibrium for a given radiative fotcmg—referred to as specnfic equilibrium climate
sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a

784,000-year-long field reconstruction of sea surface p es and a i paleoclimate model
simulation. Our results reveal that S is s(rongly dependent on the climate background state, with significantly
larger values attained during warm p Using the Rep ive Conc 1 Pathway 8.5 for future

greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by
2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean tempera-
tures will very likely exceed maximum levels reconstructed for the Iast 784,000 years. On the basis of
temperature data from eight glacial cycles, our results provide an indep lidation of the d
of current CMIP5 warming projections.

2016 © The Authors,
some rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. Distributed

License 4.0 (CC BY-NQ).

“Last Glacial Maximum” (cold
period 19—23,000 years ago):

2.3°C

‘past 65 million years”
2.2—4.8 °C

“784,000- year-long field
reconstruction”:

3.2 °C (full period),

4.8 °C (warm periods, like now)
Top: AAAS license 4455751194395

Middle: SpringerNature license 4455751310235
Bottom: Creative Commons Attribution License



Methods using more modern data include
“emergent constraints”

Find a process that relates to climate sensitivity
and constrain it with observations.

Using Brient & Schneider (2016, doi: 10.1175/JCLI-
D-15-0897.1)
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* From observations we have a

. S : Oa,
probability distribution of: 7

e See if this relates to ECS in CMIP5
climate models
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High Sensitivity Models
Low Sensitivity Models

ECS is bigger when low
clouds retreat a lot

under warming.

|
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Deseasonalized da /X(T) (%/K)
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High Sensitivity Models
Low Sensitivity Models

ECS is bigger when low
clouds retreat a lot

under warming.

Link observed retreat to
ECS using model fit with
Bayes’ theorem
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HS models
LS models
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== Raw models
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HS models
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Summaries of emergent constraints:
Caldwell et al. (2018), doi: 10.1175/JCLI-D-17-0631.1

Qu et al. (2018), doi: 10.1175/JCLI-D-17-0482.1
Lots, they have some issues, but usually ECS, ¢/gent > 3 °C.

Cox et al. (2018, doi: 10.1038/nature25450) on low end
from variability of historical temperatures: 2.8 °C.



Lots of ECS studies with different techniques

Paleo spans the range

Physics plus observation “emergent constraints” favour
ECS >3 °C

What about the low end?



Linear model of Earth response

AN(t) = AF(t) — A(£)AT(t)

AN = Change in Earth’s net heat imbalance (W m™)
AF = Radiative forcing (W m2)

A = Feedback parameter (W m=2 K)

AT = Change in temperature (°C)



Linear model of Earth response

AN(t) = AF(t) — A(t)AT(t)
Assume:

Alt) =24
ANgg = AN(t » ) =0



Linear model of Earth response

- AF(t) — AN(t)
B AT (t)

AF>xco2
A

ECS = ATeq,2><C02 —



- AF(t) — AN(t)
B AT (t)

Dessler (2010): cloud feedback “likely positive”
ECS>2°C

AR oug (W/m2)

-0.6 -0.4 -0.2 0.0 0.2
Global avg. surface T (K)

Dessler (2010) Science doi: 10.1126/science.1192546



- AF(t) — AN(t)
B AT (t)

BUT THIS EQUATION IS THE SOURCE OF SEVERAL
LOW ECS ESTIMATES...

We must understand why some methods give
higher/lower values to better estimate ECS.



Lindzen & Choi (2009):

ECS is much lower than in models



Lindzen and Choi (2009) picked AT and AN for the
below coloured periods:
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Lindzen and Choi (2009) picked AT and AN for
the below coloured periods:
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“ERBE data appear to demonstrate a climate
sensitivity of about 0.5°C”

doi: 10.1029/2009GL039628
© 2009. AGU. Permission granted for academic use.



Lindzen and Choi (2009) picked AT and AN for
the below coloured periods:
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But how and why did they pick those coloured periods?

doi: 10.1029/2009GL039628
© 2009. AGU. Permission granted for academic use.



'SST Intervals 1984-2000
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Trenberth, Wong & O’Dell (2010) : “[Lindzen & Choi’s 2009] results are neither
robust nor meaningful, as small sensible changes in the dates bounding their
warming and cooling intervals entirely change the conclusions.”

doi: 10.1029/2009GL042314 ©2010. AGU. Permission granted for academic use.



Lindzen & Choi (2009):
If you select time periods in just the right way, then

ECS is much lower than in models



Lindzen & Choi (2009):

If you select time periods in just the right way, then
ECS is much lower than in models

Spencer & Braswell (2011):

ECS is much lower than in models



ScienceDaily.com — “Earth’s atmosphere may be
more efficient at releasing energy to space than
climate models indicate, satellite data suggest”

Forbes — “New NASA Data Blow Gaping Hole in
Global Warming Alarmism”




Spencer and Braswell (2011)
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Dessler (2011):

Colours = obs * uncertainty
Black lines = models

Original paper looked at 14 models,

plotted just 6. Only plotted % of obs
datasets.

Regression Slope

“[Plotting all] of the data provide a
much different conclusion.”

-15 -10 -5 0 5 10 15
Lag (months)

doi: 10.1029/2011GL049236. © 2011. AGU. Permission granted for academic use.



Lindzen & Choi (2009):
If you select time periods in just the right way, then
ECS is much lower than in models

Spencer & Braswell (2011):
If you remove most of the model and obs, then

ECS is much lower than in models




Lindzen & Choi (2009):

If you select time periods in just the right way, then
ECS is much lower than in models

Spencer & Braswell (2011):

If you remove most of the model and obs, then

ECS is much lower than in models
Monckton et al. (2015)

ECS is much lower than in models



Monckton et al. (2015)

“Peer-reviewed pocket-calculator climate model
exposes serious errors in complex computer
models” — Phys.org

“Is climate change really that dangerous?

Predictions are ‘very greatly exaggerated’, claims
study” — The Daily Mail



Monckton et al. (2015)

“The model indicates...that, since feedbacks are likely to be
net-negative, a better estimate is 1.0 K;”



Monckton et al. (2015)

“The model indicates...that, since feedbacks are likely to be
net-negative, a better estimate is 1.0 K;”

“The simple model has only five tunable parameters:”



Monckton et al. (2015)

“The model indicates...that, since feedbacks are likely to be
net-negative, a better estimate is 1.0 K;”

“The simple model has only five tunable parameters:”

“In Fig. 5, a regime of temperature stability is represented by
J.. < +0.1, the maximum value allowed by process engineers
designing electronic circuits intended not to oscillate under any
operating conditions.”


https://www.sciencedirect.com/science/article/pii/S2095927316305448

Monckton et al. (2015)

“IThe model’s] output proves to be broadly
consistent with observation, while the now-
realized projections of the general-circulation
models have proven to be relentlessly
exaggerated.”



Adapted from doi: 10.1007/s11434-014-0699-2

Year



Adapted from doi: 10.1007/s11434-014-0699-2




Lindzen & Choi (2009):
If you select time periods in just the right way, then

ECS is much lower than in models

Spencer & Braswell (2011):

If you remove most of the model and obs, then
ECS is much lower than in models

Monckton et al. (2015)

If you make up parameters and data

ECS is much lower than in models
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Lindzen & Choi (2009):
If you select time periods in just the right way, then

ECS is much lower than in models

Spencer & Braswell (2011):

If you remove most of the model and obs, then
ECS is much lower than in models

Monckton et al. (2015)

If you make up parameters and data

ECS is much lower than in models

Lewis & Curry (2018)

ECS is quite a bit lower than in models



“IPCC Overestimates Climate Sensitivity: Study” —
Competitive Enterprise Institute

“Some More Insensitivity about Global Warming”
— Cato Institute

“Is Climate Alarmist Consensus about to Shatter?”
— Heartland Institute



How does this paper compare?

ECS = AF Al
= Blaxco2 AN
AFsvcoo 3.81W m™
AT 0.80 °C ECS 1.50 °C
AF 2.52 W m~ 5—95%:1.05—2.45 °C

AN 0.50 W m



How does this paper compare?

ECS = AF =
= Bl2xco2 3 T AN

/

Come from models




How does this paper compare?

ECS = AF =
= Bl2xco2 3 T AN

/

Come from models

Let’s look at the AT and AN to see if they explain the
difference between Lewis & Curry and IPCC



Temperature anomaly (K)

1.0

0.8}

0.6f

0.4

0.2}

AT

1900 1950 2000
Year

AF — AN

ECS — AFZXCOZ

Lewis & Curry use:

AT = T007-2016 — T1869-1882
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IPCC AR5 Figure 9-08,

CMIP5 vs HadCRUTA4 (obs)
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ECS — AFZXCOZ AF—AN

1 Model:

1861—2005
warming:

0.66 °C

Temperature change (° C)
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AF — AN

Measured ECS = AF, o>
areas 1996—
2005

1861—2005
warming:

0.59 °C
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Measured FCS = AR

1900—1909

1861—2009
warming:

0.53°C

Temperature change (° C)
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ECS — AFZXCOZ AF — AN
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Observations MOdels Credit: Kevin Cowtan



ECS — AFZXCOZ

(b) Trend difference, blended temperature anomalies
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SSTs warm less.

Credit: Cowtan et al. (2015)
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AT [°C]
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AT [° C]

ECS = AF3xco2
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Consistent comparison

* AT ~20 % higher with global
coverage + reduced air/water
blending bias

* Berkeley Earth minimizes these
and says 0.95 °C

* Lewis & Curry used HadCRUT4
0.80 °C for main result
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Consistent comparison AN

* AN is the energy imbalance

* Mostly ocean heat, generally from Argo
floats.

* WE DO NOT HAVE 1869—1882 DATA... where
does it come from?



Early period heat uptake

* Lewis & Curry take N;gg9_1g82 from a CCSM4 model run that
began in AD850.

* Climate models are “spun up” in a control run, often without
volcanoes

* Small, missing volcanic cooling so ocean is slightly out of balance

* The moment volcanoes erupt, deep ocean cools.
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Source of Lewis & Curry early N
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Source of Lewis & Curry early N
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Let’s do emergent constraint

e Use Lewis & Curry (2018) method on every CMIP5 model that has
outputs

AT
AF — AN

ECShist = AF>%c02



Let’s do emergent constraint

e Use Lewis & Curry (2018) method on every CMIP5 model that has
outputs
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Forster et al. (2013)




Let’s do emergent constraint

e Use Lewis & Curry (2018) method on every CMIP5 model that has
outputs

CMIP5 sampled like observations

\
AT
ECShist = AFoxcoz AF — AN

\/

Forster et al. (2013)




Let’s do emergent constraint

e Use Lewis & Curry (2018) method on every CMIP5 model that has
outputs

CMIP5 sampled like observations

v
AT 2007—2016 =

ECShise = AFaxco2 77— AN/CMIPS output

\/

Forster et al. (2013)




Let’s do emergent constraint

e Use Lewis & Curry (2018) method on every CMIP5 model that has
outputs

CMIP5 sampled like observations

*
2007—2016 =
ECShist = AFaxco2 37— AN/ CMIP5 output

\ / \1869—1882 =
Scaled CCSM4, like

Forster et al. (2013)

in Lewis & Curry
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ECShist (K)
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—— Observed ECSpjst

ECShist (K)

Apply Bayes’
theorem with
P(ECS|ECS,,.,)
from CMIPS5 fit
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Recent heat imbalance from Argo floats

Steric Trends from JAMSTEC 0 - 1500m (Jan 2003 - Dec 2012)
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Fig. 10 Steric trend map based on Jamstec data over January 2005-December 2012 showing the Argo data
gap in the Indonesian region and the contours (black line) of the area considered in this study to estimate—
using the ORAS4 reanalysis—its contribution to the global mean steric trend
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Sea level trends from altimetry '91—18

Multi-Mission Sea Level Trends

Period: Sep-1992 to Jan-2018
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Recent heat imbalance from Argo floats

Steric Trends from JAMSTEC 0 - 1500m (Jan 2003 - Dec 2012)
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1 9 80 — 2 OO 5 Zhou, Zelinka & Klein http://dx.doi.org/10.1038/ngeo02828

CMIP5-historical T, trend

AMIP T, trend

Reuse from SpringerNature, license 4454860149018



1 9 80 — 2 OO 5 Zhou, Zelinka & Klein http://dx.doi.org/10.1038/ngeo02828

CMIP5-historical LCC trend

i = AMIP LCC trend

Reuse from SpringerNature, license 4454860149018



1 9 80 — 2 OO 5 Zhou, Zelinka & Klein http://dx.doi.org/10.1038/ngeo02828

ISCCP LCC trend % per 30 yr
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RED is “pattern difference from average”
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* Lewis & Curry ECS, ., = 1.5 °C maps to ECS,,,.,=2.4 °C
* We must:

1) Make sure heat uptake data aren’t biased

2) Work out cloud pattern effects

3) Improve AF comparison

Dieng or Zhou AN effects change ECS,,,, to 2.5—3.0 °C

AF could be bigger shift.



Conclusions

* When you see an energy budget study on ECS, look for
three things:
* How do they select their data and time periods?
* Do they assume A = constant?
* Do they test their exact calculation on climate
models and check if it works when we know answer?
* Doing this for Lewis & Curry suggests 2.4 °C+, not 1.5 °C




