PROPOSAL
FOR NEXT
GENERATION
ESGF SEARCH
SERVICGES

LUCA GINQUINI

NASA JET PROPULSION LABORATORY AND
CALIFORNIA INSTITUTE OF TECHNOLOGY

JPL UNLIMITED RELEASE SYSTEM CLEARANCE NUMBER: #
© 2018 CALIFORNIA INSTITUTE OF TECHNOLOGY. GOVERNMENT SPONSORSHIP ACKNOWLEDGED

Current ESGF Search Architecture

* Enables local administration of metadata catalogs, yet federation wide searches

* Based on Apache Solr, leverages functionality for distributed searches and
replication

* Each node replicates the catalogs of all the other nodes to resolve searches locally

* A client can query any of the nodes in the federation and obtain the same results

Current Shortcomings

* Each node administrator must manually configure a replica shard for all other nodes in the
federation

* High potential for inconsistencies across nodes (for example, if one replica breaks at one
node)

* All nodes must scale concurrently when the federation grows (number of index nodes or
metadata holdings at each node)

* The current Solr installation is becoming obsolete and insecure, yet it is difficult to upgrade:

* All sites must upgrade simultaneously for replication to keep working in both directions

* Data must be re-indexed to upgrade the underlying Lucene version

Proposal for Next Generation ESGF Search Architecture

* et each institution maintain only one index node where they publish their
data (i.e. no replica shards)

* Establish a few “super-indexes” that aggregate metadata from all institutions

* Point all client applications to the super-indexes

JTechnical Implementation

* Adopt Solr Cloud
* Deploy as Docker and Kubernetes
* On the cloud, or in-premise

* Harvest and sync

Solr Cloud

* Solr Cloud is a more advanced and scalable Solr architecture, designed to be
deployed on a multiple hosts

* The full metadata index is partitioned into logical shards
* Each shard is physically instantiated as one or more replicas

* Replicas are automatically deployed onto Solr instances separate hosts (if
possible) for resiliency

Fe===

|
| Full Index
|

b —— =

r----

|
| Full Index
|

L - — =

Solr Cloud

* Metadata can be published to any Solr instance and it will directed to the
proper shard leader, then replicated (distributed indexing)

* Clients can query any Solr instance, and the query will be load balanced
and resolved versus a complete set of shard replicas (distributed querying)

* A set of Zookeeper servers provides centralized configuration management

Fe===

|
| Full Index
|

b - — =

r-----

|
| Full Index
|

b - - —

Prototype Deployment on AWS

* Small cluster of 3 EC2 instances of type t2.medium (2 CPUs, 4GB memory)

* Solr configuration: 3 shards per collection, 3 replicas per shard

* Tracking ESGF global archive for over 2 months

"

Solr~

@& Dashboard

(3 Logging

o Tree

A

4k Graph (Radial)

[5] Collections
|2 Java Properties
2 Thread Dump

4 Suggestions

|/ Collection Selec... v’

| Core Selector - ’

~ aggregations —Oshard2~——

— —————COshard3———

——shardl=——————

 datasets ————COshard2

————Oshard3——

e shardl

files— — shard2

O shard3

O shardt——

—9172.17.09

0172.17.0.8
0172.17.0.7

91721709

0172.17.0.8
0172.17.0.7

__————0172.17.09

0172.17.0.8
0172.17.0.7

9172.17.0.7
0172.17.0.8
0172.17.0.9

0172.17.0.7
0172.17.0.8
9172.17.09

0172.17.0.7
0172.17.0.8
€172.17.09

0172.17.0.7

—8172.17.0.8

0172.17.0.9

0172.17.0.7

—8172.17.0.8

0172.17.0.9

0172.17.0.7

—9172.17.0.8

0172.17.0.9

® Leader
O Active

O Down
O Recovery Failed
Hreebre

|| Documentation

4 Issue Tracker

S IRC Channel

[/] Community forum |o| Solr Query Syntax

Docker and Kubernetes

Expose load-
balances Solr
endpoint to the N
internet

All software components were deployed)
as Docker containers onto an AWS o .

Kubernetes cluster

* Zookeeper = K8s Deployment

Kubernetes Job starts a Pod that runs to
completion.
Uploads SolrCloud configuration to
Zookeeper and initializes Solr Collections,
Shards

Periodically syncs
with remote Solr
slave

Migrates metadata
from remote Solr
slave

* Solr instances = K8s Stateful Sets

ubernetes Job

* Harvest/Sync clients = K8s Cron Jobs

Provides load balancing

pods for requests by clients
jpefde the cluste

Kubernetes StatefulSet

Provides stable internal IPs
for the pods in the
StatefulSet

|
.

)
) ~ < \\ \ 7 P // g |

~ \ /7 s - |
I ~ <.

~ \ /7 L
| ~ ~ \ / - - - - |
~ O\ // // - |
;g Persistent volumes w -
Zookeeper manages the cluster of distributed - StatefulSet provides stable identity,

Solrs - shard ar;gl:eem;c:zcatlon, leaders, networking, and persistent data to the pods.
Also provides SolrCloud native load Pods can be stopl_)ed, restart_ed, re-e_lllocated
across nodes without loosing their state

balancing across all shard replicas]

Harvesting and Syncing

* Harvesting clients are run initially to read all records from each
existing master node into the super-index

* May take up to several days for large indexes

* Syncing client is run every hour to sync the remote index to the
super-index

* Algorithm uses timestamp stats to compare the indexes by
time interval - year/month/day/hour

Advantages

* Automatic distributed indexing, querying and load balancing
* Resiliency and automatic failover
* Horizontal and vertical scalability

* Add more servers and/or increase the memory of each
server

* The system can be scaled by increasing the resources at
one location, not at all sites through the federation

* Upgrades can be executed by bootstrapping a new system
in the background, and switching over the proxy when
ready

Benchmarking: Datasets

* Using “super-index” deployed on small AWS K8s cluster

* 3 EC2 instances of type “t12.medium” -2 CPUs, 4GiB memory

Query Time (ms)

1400

1200

g
o

3

3

N
8

8

o

Solr Benchmarking

s
1 : : —_—

4 5 6 7

Query for Datasets

——AWS
——LLNL
——|PSL
CEDA
——DKRZ
——JPL
——CGP

~1M Datasets

Benchmarking: Flles

1400

1200

g
o

600

Query Time (ms)

400

200

Solr Benchmarking

o
3 4 5 6

/ 4/4&\.,

Query for Datasets

——AWS
——LLNL
—=—|PSL
CEDA
——DKRZ
——JPL
——CGP

~18M Files

Conclusions

* Proof of concept successfully executed

* Software stack is ready for operational deployment as
beta service

* Need to find resources - on the cloud or in-premise

* A timely deployment is recommended to enable
smoother upgrades during CMIP6 operations

