
PRE-DECISIONAL DRAFT; For planning and discussion purposes only 1

Mars Science Laboratory

F Prime Flight Software Overview for Small 
Scale Systems

3/6/18

Small Scale Flight Software Group
Jet Propulsion Laboratory

Copyright (C) 2009-2018 California Institute of Technology. Government sponsorship acknowledged . ALL RIGHTS RESERVED. 
Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, 
under a contract with the National Aeronautics and Space Administration. 

This software has been approved for open source release under NTR #49404.



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 2

JET PROPULSION LABORATORY

FSW Challenges for Small Scale Systems

• FSW development processes in practice tailored for large scale 
projects

• Ability to support growing variety of platforms
• Many small scale systems are NASA Type II/Class D missions

– Extreme cost and schedule constraints; all stages of software 
development, especially test, are compressed

– Consensus on acceptable FSW risk for Class D missions not well 
established

– Capability requirements expected to grow faster than resource/schedule 
allocations

– Lack of formal, validated FSW cost models for this mission category

Our approach: leverage the use of a software product line 
tailored to address these challenges.

2



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 3

JET PROPULSION LABORATORY

The F Prime (Fʹ) Product Line

• The F Prime Product Line targets small scale, in-house missions that 
are expected to fall in three general categories:
– Small-scale Class D flight systems, i.e. CubeSats or SmallSats
– Flight instruments and/or sensors requiring software developed for a 

dedicated processing platform
– Flight “deployables” – freely operating flight systems that are not 

spacecraft but may be deployed by spacecraft in support of a spaceborne
mission (ex. a planetary lander or helicopter)

• Additionally, Fʹ supports
– Testbed/prototyping efforts requiring embedded software
– Software technology development with intended path to flight
– Collaborative flight software development with universities and industry 

partners and among JPL small scale projects in concurrent development
• The variety of projects and tasks the Fʹ Product Line can support is 

wide

3



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 4

JET PROPULSION LABORATORY

What is Fʹ?

• Fʹ facilitates the development of software for embedded applications. 
• The Product Line consists of three top-level elements:

– A component-based software architectural framework for building a 
software system based on the concept of components that encapsulate 
localized behaviors and directional ports that establish strongly defined 
interfaces between components.

– A suite of modeling and code generation tools for specifying the 
connections of components associated with a specific software system in 
a topology, as well as state-based behaviors defined within components, 
and converting these specifications automatically into flight software.

– A growing collection of completed, inheritable components providing 
capabilities common to many flight system applications (ex. command and 
telemetry management, command sequencing, file system management, 
etc.).

4



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 5

JET PROPULSION LABORATORY

What is Fʹ?

• Fʹ facilitates the development of software for embedded applications. 
• The Product Line consists of several elements:

– An architectural approach that decomposes an embedded software 
system into discrete components with well-defined interfaces that 
communicate over ports

– A C++ framework that provides basic features such as message queues 
and an OS abstraction layer

– A suite of tools for specifying components and their connections and 
automatically generating a partial implementation from the specification 

– A growing collection of generic components for basic features such as 
command dispatch, event logging, and memory management that can be 
incorporated without modification into new software projects

– A suite of tools for testing software at the unit and integration levels

5



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 6

JET PROPULSION LABORATORY

Where is it being used?

• Developed under JPL technology exploration task NGAT (2013)
• Flown on RapidScat – radar scattermometer on ISS (2014-2016)
• Currently in operations on the Asteria Cubesat (Deployed Nov 2017)
• Baselined flight software deployments in development for:

– Leonardo (Mars Helicopter Technology Development)
– Lunar Flashlight (Cubesat)
– NEAScout (Cubesat)
– Autonomy R&TD task

• Available on GitHub
– Reference example can be run on Linux, MacOS, Cygwin and most 

embedded ARM processors (e.g. Raspberry Pi)
– Available open source at https://github.com/nasa/fprime

6

https://github.com/nasa/fprime


PRE-DECISIONAL DRAFT; For planning and discussion purposes only 7

JET PROPULSION LABORATORY

Features of the Fʹ Framework

• Quick development: Fʹ provides a high-level 
specification and code generator that 
encapsulates components (behaviors), ports 
(data interconnections), thread management, 
IPC, commands, telemetry and parameters; 
developer concentrates more on domain-
specific code

• Reusability: component-based architecture 
means components are not dependent on each 
other; can be easily integrated into a software 
system and swapped out (ex. actual vs. 
simulation) without recoding

• Testability: Fʹ code generator generates 
counterpart test component that “knows” the 
interfaces, commands, and telemetry, 
streamlining unit test

7



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 8

JET PROPULSION LABORATORY

Fʹ : A Portable Framework

• Code base is in portable, embedded C++
• Has abstraction layer for OS facilities such as:

– Threads
– Synchronization
– Files
– Time

• Data products are stored and transmitted in a portable representation
– Allows interaction with ground system no matter the processor architecture

• Has been run on the following processor architectures:
– X86, Power PC (Rad750), ARM, TI MSP430, Leon3 (SPARC) 

• Has been run on the following OSes:
– VxWorks, RTEMS, Linux, MacOS, Cygwin, Raspberry Pi Raspbian
– Also can run “bare metal” (without OS)

• Very compact
– Framework classes ~1K compiled

8



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 9

JET PROPULSION LABORATORY

Fʹ : A Flight-ready Framework

• Developing over time a library of reusable components for common facilities 
and specific hardware platforms

• For 2015-2017, C&DH components have been taken through flight software 
processes

– Design, coding and testing reviews with LARS tools and code coverage
• Design and code reviewed by peers
• Code scrubbed by static analyzers (e.g. Coverity)
• 100% coverage except certain assertions (default switch, etc)
• Delivered with repeatable automated unit tests

– Includes: Rate Groups, Command handling, Command Sequencer, Telemetry Processing, 
Parameter storage, Event handling, File Uplink/Downlink, Telemetry Database, Health Monitor, 
File Manager, Socket “Ground” interface

• F’ deployments can integrate with a variety of ground systems
– Framework has uniform data representations
– Has been adapted to work with JPL’s AMPCS and WTTCS ground systems
– Product line includes a Python-based lightweight ground data system software that 

facilitates software system level testing

9



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 10

JET PROPULSION LABORATORY

Wholesale Modeling and Auto-Code

• Modeling interface defined for the MagicDraw application that extends the 
SysML language to enable formal modeling of:

– Fʹ Components 
– Fʹ Ports
– Component and Subsystem Topologies (instances and connections)

• In-House MagicDraw Plugin developed to verify Fʹ software models and 
generate the Fʹ XML specifications (not included in open source release).

• Fʹ autocoder generates flight code directly from XML specs
• State-machine behaviors are modeled and auto-coded using separate in-house 

tools that integrate cleanly with the F’ Component modeling paradigm
• Component code change NOT required for the following modifications:

– Add new output ports of the same type
– Remove connections 
– Rewire connections
– Move components to different targets (e.g. partitions, processes, or cores)

• Topology code changes are automatically generated by the component code 
generation from models



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 11

JET PROPULSION LABORATORY

Fʹ AutoCoder
(Python)

MagicDraw Component 
Plugin

Component 
AI.xmlPort AI.xml

SerializedData AI.xml

Topology AI.xml

Component.cpp

Port.cpp
SerializedData.cpp

Topology.cpp

Application 
Interface 
Specification

Application 
Flight Code

Fʹ Component Autocoding Process/Products

SysML Application 
Component Model

Domain Specific 
XML Files

Command/Telem
etry Dictionaries

AMPCS XML Dicts

Python Config. Modules

JSON OpenMCT Dicts

OPCODE Spreadsheet



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 12

JET PROPULSION LABORATORY

Fʹ Ground Data System Capability

• Lightweight portable ground 
support system 

• Out-of-the-box ready to use on 
Linux, Mac OSX, or Windows 
without any mission specific 
tailoring.

• Enables integration testing and 
quick-look telemetry monitoring
 Integration test API and 

logging
 Immediate commanding
 Event and telemetry tables
 Sequence assembly and 

execution
 File uplink/downlink
 Stripcharts and histograms

• Could be considered for 
ATLO/Ops support but not full 
featured GDS like AMPCS

Command
Panel

Channel
Telemetry
Panel

Plotting (Stripcharts, Histograms, etc.) Panel



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 13

JET PROPULSION LABORATORY

Fʹ Ground Data System Parts 

Embedded Application
Built on Fʹ (F prime)

FSW framework 

Threaded TCP
Socket Server

Generic Out 
of the Box Protocol
Over TCP Sockets 

TCP Socket
TCP
Socket
Conne
cts

Internally Utilize Fʹ
Native
Command/Telemetry
Packet Protocol

Disk 
Logging

TCP Sockets to client apps

Statechart 
Monitors

MagicDraw
Monitors Command Line Apps

Delivered with Fʹ Framework Distribution:
• Threaded TCP Socket Server
• gse.py Graphical User Interface
• Integration Test Framework API
• Example command line scripts built on API

Multiple instances of gse.py GUI apps

Project specific
pytest integration

test scripts

Projects can insert
adapters here!

CubeSat FSW Target



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 14

JET PROPULSION LABORATORY

Management Infrastructure for Fʹ Deployments

• Multi-mission Fʹ Software 
Management Plan drafted –
under review by Process Owner

• Common CM environment 
established under GitHub

• Tools supporting automated 
progress tracking and metrics 
collection available

• Increment funding provided by 
projects for infrastructure 
development

• Cost metrics for Fʹ FSW derived

• Future Goals
– Development of formal, validated Fʹ flight software cost model
– Full CDH layer FSW release supporting CubeSat/SmallSat avionics 

product built around an in-house System on a Chip platform
– Establishment of dedicated product line management team



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 15

JET PROPULSION LABORATORY

Fʹ Technology Enhancements In Progress

• Software Design: replacing SysML/MagicDraw modeling and auto-
code with streamlined alternative requiring a reduced learning curve 
that can be made open source
– CMU student SURP project completed Dec 2017 developing a domain-

specific source language (Fʹʹ) for specifying Fʹ models and an associated 
code generation tool for the representative XML.

– CMU student project initiated to develop a tool for visualizing topology 
graphs and a graphical tool for constructing and editing topology graphs.

• Software Verification: exploring scenario-based testing to 
automatically construct and execute tests, resulting in a structured 
approach to testing that generates many more tests than could 
explicitly be constructed by hand. 
– Developed a test framework under ESEI and LaRS for specifying system 

behavior as a set of rules and using the rules to describe scenarios. 
– Currently applying this technique to a couple F’ testbed/demo projects, 

including the autonomy SR&TD task.
– Developed tool using “concolic testing” technique for more effective rules-

based testing 15



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 16

JET PROPULSION LABORATORY

F’ Technology Enhancements (continued)

• GDS tool enhancements 
– Summer 2017 internship completed demonstrating new web browser 

portable client GUI. Can run on mobile tablets or phone devices using 
OpenMCT open-source tool from Ames. Also demoed ability to re-play 
telemetry in addition to real-time stream playback. 

– Summer 2017 internship completed re-engineered TCP Socket Server 
prototype providing multiple FSW target system support and enhanced 
socket connection reliability using ZeroMQ middleware. 

16



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 17

JET PROPULSION LABORATORY

Summary

• Dedicated group within the Flight Software organization focusing on 
delivery to small scale systems, notably Class D CubeSats.

• Selected product line approach addresses challenges associated with 
Class D missions better than traditional “siloed” development efforts.

• There is much more than a defined software architecture and reusable 
flight code that can be utilized; the product line includes software 
design and code generation tools, test frameworks, GSE support, and 
a software management plan and progress tracking tools that can be 
leveraged on future in-house and contracted FSW development tasks.

• Technology development efforts in place, along with infusion paths, to 
improve development efficiency, deliverable reliability and ease of 
collaboration for future projects.

17



PRE-DECISIONAL DRAFT; For planning and discussion purposes only 18

JET PROPULSION LABORATORY

References

• F Prime software architecture and a users guide documents
https://github.com/nasa/fprime/tree/master/docs

• F Prime reference application
https://github.com/nasa/fprime/blob/master/Ref/docs/sdd.md

• Contact
Jeff Levison, Supervisor, Small Scale Flight Software Group, JPL
Jeffrey.W.Levison@jpl.nasa.gov

• Contributors
Rob Bocchino
Tim Canham
Len Reder
Garth Watney

18

https://github.com/nasa/fprime/tree/master/docs
https://github.com/nasa/fprime/blob/master/Ref/docs/sdd.md

	F Prime Flight Software Overview for Small Scale Systems
	FSW Challenges for Small Scale Systems
	The F Prime (Fʹ) Product Line
	What is Fʹ?
	What is Fʹ?
	Where is it being used?
	Features of the Fʹ Framework
	Fʹ : A Portable Framework
	Fʹ : A Flight-ready Framework
	Wholesale Modeling and Auto-Code
	Slide Number 11
	Fʹ Ground Data System Capability
	Fʹ Ground Data System Parts 
	Management Infrastructure for Fʹ Deployments
	Fʹ Technology Enhancements In Progress
	F’ Technology Enhancements (continued)
	Summary
	References

