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Atmospheric rivers and their associated flood and hazard risks
occur globally and influence climate and water extremes.

NOAA ESRL

Over 90% of poleward moisture transport at midlatitudes is by ARs that take up only ~10% of the zonal
circumference (Zhu and Newell 1998).

In the west, ARsS
account for ~40% of
annual precipitation

and most floods.




Atmospheric rivers —> extreme precipitation --> snowpack loading --> avalanches Find out more!
. Hatchett et al. 2017 J. Hydrometeorology 18(5):1359-1374

Most often, the coastal mountains (Sierra Nevada and Cascades) feel the wrath of atmospheric rivers. Fdpy/lpurnalxametsociorg/dol/aba10:1175/JHM-D-16-0215:1

If the atmospheric river (AR) is directed towards lower mountains, it can affect inland mountains. Here, snowpacks are shallower and weaker, so heavy
snowfall increases avalanche hazard. While avalanche deaths during ARs are most frequent near the coast, the number of deaths per AR increases as
one moves inland. '
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Figure from Desert Research Institute



Key Research Question

What Is the limit of
subseasonal (1-week to 1-
month) prediction skill of 2-

week AR occurrence
(number of AR days per two
weeks), and how does it vary
as a function of season,
region, and certain large-
scale background climate
conditions?

Key Applications Question

Can present-day S2S
forecast systems provide
benefit to CA water resource
management decision
makers?



A global, objective algorithm for AR identification

(Guan and Waliser 2015)

« Based on Integrated Vapor Transport
(IVT) fields and a number of common AR
criteria (e.g. Ralph et al. 2004)

« Applied to global hindcast/forecast
systems and reanalysis datasets

« Code and databases available at:
https://ucla.box.com/ARcataloq
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https://ucla.box.com/ARcatalog

Global AR Climatology

Guan and Waliser 2015

Based on Integrated Vapor Transport (IVT), 1997-2014
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Intensity threshold:
IVT > max(85th percentile, 100 kg m-1 s-1)
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(s2sprediction.net)

The S2S Project Database Wipp™
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Goal: use objective identification algorithm to
assess global AR subseasonal prediction
skill at lead times of 1-week to 1-month using
S2S hindcast data

DeFlorio et al. 2017, Global evaluation of atmospheric river
subseasonal prediction skill, Clim. Dyn. (submitted)




AR occurrence climatology (#AR days per two weeks; “AR2wk”)
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NDJFM AR2wk Forecast skill: 7d-21d lead window
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Note: forecast skill is defined as the anomaly correlation of AR2wk for ERA-I and each model



NDJFM AR2wk Forecast skill: 14d-28d lead window
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NDJFM AR2wk Occurrence Anomalies: ENSO, AO, and PNA, ERA-I
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NDJFM AR2wk Occurrence Anomalies: MJO, ERA-I
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NPac/West US, PNA
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Also: higher ratio of hits relative to false alarms during +PNA conditions
relative to —PNA conditions for individual AR events at 3d, 7d, 10d lead
times (DeFlorio et al. 2017, J. Hydromet., accepted)
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Experimental global ECMWF AR S2S occurrence forecasts: chance of AR
occurring during a week-long window
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Experimental global ECMWF AR S2S occurrence forecasts: chance of AR
__occurring during a week-long window
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Summary: subseasonal AR prediction skill

Subseasonal (1-week to 1-month lead time) AR prediction skill evaluated globally for
the first time in multi-model S2S framework (DeFlorio et al. 2017, submitted)

 Skill metric = correlation between observed and model “number of ARs occurring in

a two week window” (AR2wk, or AR occurrence)

ECMWEF forecast system is generally most skillful model in 7-21 day and 14-28 day
lead windows
Observed AR occurrence is sensitive to large scale climate mode variability

« S2S AR prediction skill is sensitive to large scale climate mode variability

Higher prediction skill over the North Pacific/Western U.S. region:

« at O-week and 1-week lead time during +PNA relative to —PNA

« at 1-week and 2-week lead time during MJO phase 7 relative to “all days”
forecast (but not quite at 95% confidence)




Ongoing and future research plans

Analysis of entire S2S model suite
Multi-model (ECMWF, ECCC, NCEP) experimental week-3
S2S forecasting (collaboration with CW3E; S. Gershunoy, A.
Subramanian, F. M. Ralph) for winter 2017-18 and 2018-19
« CA-DWR sponsored
* Proposed S2S Project applications pilot study
Joint consideration of statistical and dynamical approaches,
optimizing conditional AR skill estimation parameters
Emphasize importance of distinguishing ARs (and their
prediction skill) from all baroclinic systems that produce
extreme precipitation
How can S2S research community distill results into something
useable for applications community?




Thanks!
michael.deflorio@jpl.nasa.gov




