
The COTS Parts Toolbox –
Evolution & Examples

Dr. Douglas Sheldon 

Assurance Technology Program Office Manager (ATPO) 

Office of Safety and Mission Success (OSMS)

Jet Propulsion Laboratory

California Institute of Technology

© 2017 California Institute of Technology. Government sponsorship acknowledged
Reference herein to any specific commercial product, process, or service by trade 

name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 

California Institute of Technology.



j p l . n a s a . g o v

Motivation
• EEE Parts (both Mil/Aero and COTS) continue to evolve into ever increasing levels of 

sophistication and complexity
• Power regulators w/ adaptive reconfigurability
• Extensive increase in instruction complexity with each new generation of DDR memory

• Data bus inversion
• Temperature controlled refresh, etc…

• FinFETs, 2.5/3D technologies

• Tools required to correctly understand risk and promote qualification and infusion need to 
evolve as well

• Historical Physics of Failure and Statistical Reliability ideas now need to additional concepts 
like data mining and machine learning 

• Reliability from a system perspective and related levels of abstraction support management 
of this increase in complexity and provide better assessment of possible risks

• How to account for variation?
• Support for prediction
• Confidence limits vs. single point estimates
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Thermodynamic
Entropy, Physics of 
Failure and System 

Degradation

Shmoo plots Xapsos RHA Estimate Bayes Theorem
Cosine Similarity

Classification Entropy

𝑑𝑆
𝑇𝑜𝑡𝑎𝑙

𝑑𝑡
> 0

∆𝑈 = ∆𝑄 + ∆𝑊
𝑃𝑓𝑎𝑖𝑙 = ∫ [1 − 𝐻 𝑥 ] ⋅ 𝑔 𝑥 𝑑𝑥 𝑃 𝐴 𝐵 =

𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

cos 𝜃 =
𝐀 ∙ 𝐁

𝐀 2| 𝐁 |2
𝐸 𝑆 = −𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

Comprehensive physics 
foundation to complex 

degradation versus 
“rules of thumb”

Precise emprical 
mapping of 

complex part 
behavior

Robust statistical methodolgy 
to address variation & 

unknown in both device and 
environment

Mathematically 
axiomatic means to 

include historical 
information into 

outcome possibilities

Transform practical multi-
dimensional information into 

methodology to predict 
behavior and relationships 

Example tool set

Evolution from physics based concepts applied to simple structures to 
quantitative/empirically based methodologies applied to system behaviors
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Thermodynamics and System Ageing 

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊 First Law

𝑑𝑆 ≥ 0 Second Law

𝑈 = න𝑇𝑑𝑆 − 𝑝𝑑𝑉 +෍
𝑖
𝜇𝑖𝑑𝑁𝑖

Internal Energy

Entropy Damage

Φ𝑓 − Φ𝑖 Work

𝑑𝑎

𝑑𝑡
= 𝜐 ∙ exp(−

Φ

𝑘𝑇
) Arrhenius ageing

• Degradation is is driven by the tendency of the 
system/device to come into thermodynamic 
equilibrium with its environment

• Entropy damage is a way to measure changes in 
system performance that can be related to ageing 

• Degradation-Entropy Generation theorem states 
entropy is generated when the permanent 
degradation is through an irreversible process, that 
leads to an increase in disorder in the system

• This allows the component degradation to be 
measured by entropy and thermodynamic energy

A. Fineberg, “Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing and Reliability Applications”, 2016

∆𝑆𝑑𝑎𝑚𝑎𝑔𝑒 ≥ 0
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Entropy Ageing Example

𝑓 𝑡 = fraction of work per temp cycle
∆𝑤𝑝 = 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒

• Degradation of Through Silicon Vias (TSV)

T. Wang, et. al., “Novel Entropy Production Based Full-Chip TSV Fatigue Analysis”, ICCAD 2015

• Coffin-Manson is shown to be a special case of general 
entropy expression

• Able to address complex materials and structure without 
having to resort to arbitrary estimations of parameters 
and acceleration coefficients 
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Cryogenic 8Mb SRAM Capability 

• Access time (tAA) vs. Vcc (V) 
for two different parts from 
the same lot/date code

• SRAM will continue to 
operate at cryogenic 
temperatures

• Access time is reduced at 
cold temperatures

• One part has significantly 
more margin and operational 
robustness at cryogenic 
temperatures than other 
device
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Shmoo plot for Parametric Failure Definition 
& Reliability Evaluation Time = 0

Voltage

Access 
Time

Time = End of 
Life

Voltage

Access
Time

• Identify non-linear degradations in 
parameters

• Provide clear insight into complex 
interactions between voltage, timing, 
process variation, design marginalities 

• Provide more accuracy to WCA/Fault 
Tree system reliability 

• Bridge Margin, De-rating, and Tolerance 
concepts
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RHA Methodology to include Probabilistic 
Variation in Device and Environment
• G(x) = CDF (Cumulative Density Function) of devices tested for TID

• x = dose
• g(x) = Probability Density Function (PDF)

• H(x) = CDF of dose from space radiation environment
• AP9/AP8 Monte Carlo , Ver 1.30 – 99 orbital simulations (1 year mission/LEO)

• Percentile ranking of calculated doses

“Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology”, M. 
Xapsos et. al., IEEE Transactions on Nuclear Science, Vol 64, No. 1, 2017
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RHA Methodology to include Probabilistic 
Variation in Device and Environment - 2

• 𝑃𝑓𝑎𝑖𝑙 = ∫ [1 − 𝐻 𝑥 ] ⋅ 𝑔 𝑥 𝑑𝑥

• Eliminates arbitrary RDF factor approach
• Relate failure probability to reliable circuit operation

• Improves Worst Case Analysis capability
• Variation in part performance and environmental knowledge is formally 

accounted for 
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Bayes’ Theorem

𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
𝑃 𝐻 𝐸 =

𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)

• Relates probability of a hypothesis before getting evidence, P(H), to probability of the hypothesis after 
getting the evidence, P(H|E)

• H= Hypothesis
• E= Evidence
• P(H) => Prior Probability
• P(H|E) => Posterior Probability
• P(E|H)/P(E) = Likelihood Ratio

• In Bayesian statistics a parameter is not treated as an unknown constant, but instead has a probability 
distribution that describes its uncertainty

• The uncertainty about the unknown parameters is quantified using probability so that the unknown 
parameters are regarded as random variables.

• Before the data is analyzed, the distribution of the parameter is called prior distribution, and after the 
data taken into account, the distribution is called posterior distribution.
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Bayes Examples

• Many, many examples and they 
continue to grow as Bayesian 
techniques catch on:

• Burn in stratgies – if failures occur, 
when is it appropriate to not stop but 
continue with increase samples and 
demonstrate ppm goals can still be 
met.

• High k dielectric film reliabilty –
leverage existing SiO2 information and 
whatever exists in literature and ”best 
guess” to provide improved confidence 
levels of long life extrapolation
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Qualitative to Quantitative Data Conversion 

First Name Live in Santa Clarita Drive a Toyota

Doug Yes Yes

Lori Yes No

John Yes No

Jeremy Yes Yes

Index First Name w/ ”J” Live in Santa Clarita Drive a Toyota

A 0 1 1

B 0 1 0

C 1 1 0

D 1 1 1

• Much of the information that EEE Parts Engineers deal with is Qualitative 

• Need to turn into Quantitative format(s) to leverage many of the new technique

• Variable to Attribute Conversion
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How to compare two different attribute vectors -
Cosine Similarity

First Name w/ 
”J”

Live in Santa
Clarita

Drive a Toyota Similarity to 
first vector

0 1 1 1

0 1 0 .7071

1 1 0 .5

1 1 1 .8165

• Calculate the cosine of the angle between the two vectors

• Cosine(0 degrees) = 1 => the vectors are the same.
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Apply Cosine Similarity to EEE Parts Data

14

Part Number Height Length Width
Operating 
Temp Min

Operating 
Temp Max

Output 
Voltage Min

Output Voltage 
Max

Input 
Voltage Min

Input 
Voltage Max

LT1965EDD-3.3#PBF 0.8 mm 3.0 mm 3.0 mm -40.0 Cel 125.0 Cel 3.201 V 3.399 V 4.3 V 20.0 V

LT3090HDD#PBF-ND 0.8 mm 3.0 mm 3.0 mm -40.0 Cel 150.0 Cel 0.0 V 32.0 V 1.5 V 36.0 V

Part Number
Height
0.8 mm

Length 
3.0 mm

Width
3.0 mm

Operating 
Temp Min 
-40.0 Cel

Operating 
Temp Max 
125.0 Cel

Operating 
Temp Max 
150.0 Cel

Output 
Voltage Min 

3.201 V

Output 
Voltage Min 

0.0 V

Output 
Voltage Max 

3.399 V

Output 
Voltage Max 

32.0 V

Input 
Voltage 

Min 4.3 V

Input 
Voltage 

Min 1.5 V

Input 
Voltage 

Max 20.0 V

Input 
Voltage 

Max 36.0 V

LT1965EDD-3.3#PBF 1 1 1 1 1 0 1 0 1 0 1 0 1 0

LT3090HDD#PBF-ND 1 1 1 1 0 1 0 1 0 1 0 1 0 1

Raw Data

Vectorized Data

Cosine Similarity = 0.44

• Data from IEEE datasheets360.com via web scrapper
• Not hand entered
• Using Python API (including Beautiful Soup and pandas)
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Cosine Similarity – Parts List Revision

• Similarity matrix for L type parts 
(electromagnetics)

– Similarity calculated between parts of the same type

• Coloring indicates strength of similarity:

– 0 – white (no similarity)

– 1 – dark blue (identical)

• Diagonal of 1’s is an artifact of comparing 
different revisions of the same part list
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• Similarity matrix for two part lists

• Coloring indicates strength of similarity:

– 0 – white (no similarity)

– 1 – dark blue (identical)

• Diagonal of 1’s is an artifact of comparing 
different revisions of the same part list

– One-off in diagonal indicates addition of a
new part

• Distinct regions correspond to part types

– Part comparisons are not made between 
different part types

• Manage subtle changes in part type, 
provide an precise definition of “Heritage” 
as way to reduce risk

New Part
Resistors

Capacitors

Diodes

Connectors

Electromagnetics

Microcircuits

Transformers

Cosine Similarity – Parts List Revision
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Information Entropy

• Parts community has lots of data like this – how to best turn it into more useable information?
• Will the TI TPS562209 latch up?

• Can it be predicted? 

• Use information entropy to make decision tree

• Train the decision with initial dataset and then ”predict” results for new data

Manufacturer Part Number Function Topology
Vin (V) 

Min/Max
Vout (V) 

Max
Switching 

Frequency (KHz)
Process 

Technology 
SEL result SEL Value

Linear Technology LTC3708 Step Down Buck 3.2/36 5 240 0.5um BiCMOS Non-destructive at 11 <11

Intersil Corporation ISL70002SEHFE 3.2/36 SEL immune > 75

Linear Technology LTC3129 Step Up/Down Buck Boost 1.92/15 1.4 1200
0.5um BiCMOS Destructive SEL @ 42 

MeV
42

Linear Technology RH3845 Step Down Buck 4.0/60 8 600
3u Bipolar 
w/NMOS

Destructive SEL @ 42 
MeV

<19.6

Texas Instruments TPS54821 Step Down Buck 4.5/17 15 200/1600 0.25 um BiCMOS Ok >43

Texas Instruments TPS54020 Step Down Buck 4.5/17 5 200/1200 0.25 um BiCMOS
Destructive SEL @ 42 

MeV
42

Texas Instruments TPS54620 Step Down Buck 4.5/17 15 200/1600 0.25 um BiCMOS
Destructive SEL @ 42 

MeV
42

Texas Instruments TPS562209 Step Down Buck 4.5/17 7 650 0.25 um BiCMOS ??? ???
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Information Entropy

𝐸 𝑆 = σ𝑖
𝑐−𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖) [Entropy]

𝐼𝐺 𝐴, 𝑆 = 𝐸 𝑆 − σ𝑡⊂𝑇 𝑝 𝑡 𝐸(𝑡) [Information Gain]

Information Gain = Difference in entropy before and after the set is split at an attribute

• GOAL - Construct a decision tree that returns the highest information gain (i.e., the most 
homogeneous branches).

• Data is partioned into subsets that contain instances with similar values (homogenous). 

• Use entropy to calculate the homogeneity of a sample/subset

• If the sample is completely homogeneous the entropy is zero and if the sample is an equally divided 
it has entropy of one.
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Sample Dataset

Outlook Temperature Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild Normal False Yes

Sunny Cool Normal True Yes

Sunny Cool High False No

Overcast Mild Normal True Yes

Rainy Cool Normal True No

Overcast Mild High False Yes

Sunny Cool High False Yes

Predictors

Target

http://www.saedsayad.com/decision_tree.htm

Outlook

Sunny

Windy

False

Yes

True

No

Overcast

Yes

Rainy

Humidity

High

No

Normal

Yes

ID3 Algorithm
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Summary

• Complexity and sophistication in EEE parts is increasing rapidly

• Tools used to qualify and manage risk for EEE space parts need to evolve 
and adapt to meet these constantly changing demands

• Example tools that might be helpful in this endeavor have been 
reviewed in this discussion

• Entropy – system level degradation and information

• Shmoo plotting

• Bayesian Analysis

• Data Clustering and Decision Tree
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