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Space application

Tunable Laser Spectrometer (TLS) on
Mars rover Curiosity
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Principal investigator: Dr. Chris Webster, JPL
TLS is a two-channel tunable laser spectrometer using a 2.78 um Detection of atmospheric methane at low background levels
diode laser and a 3.27 um Interband Cascade (IC) laser developed (~0.5 ppbv) that show a seasonal pattern, and in episodic
by Rui Q. Yang. These lasers operated at sub-ambient temperatures releases (7 ppbv) show Mars is active - Webster et al., 2015

and required multi-stage coolers.

In the Mars atmosphere, TLS measures CH,, CO,, H,0 and the
isotopic ratios 3C/2C, 80/1’0/¢0, and D/H
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Space application

Combustion Product Monitoring
(CPM) Instrument
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Instrument manager: Dr. Ryan M. Briggs, JPL The gases measured are: 0,, CO,, CO, HF, HCl, and HCN

Concentration range are:
HF, HCI, HCN: 2 - 50 ppmv

CPM is a six-channel tunable laser that monitors gas
concentrations that are representative of combustion

product that would be expected from an on-orbit fire. Co: 5-1,000 ppmv
, , _ o Co,: 300 - 30,000 ppmv
Developed for use in the Saffire experiment inside the 0,: 14 - 50%

Cygnus re-supply vehicle.
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Fabrication challenges for mid-IR semiconductor lasers

Strong fundamental rovibrational modes of
target compounds occur in the mud-infrared
regime

* Absorption measurements require corresponding mid-
infrared sources and detectors

Lasers in the 2.4-3.6 um wavelength range can
only be addressed by GaSb-based material
systems

Complex bandgap engineering is required

GaSb epitaxial growth for semiconductor lasers
isn’t available at commercial foundries
* Suppliers are universities or national laboratories

GaSb material systems not compatible with
standard DFB laser fabrication

Requires unique laterally-coupled feedback
gratings

Fabrication of reliable sources remains a
challenge

Type-| cascade
Type-ll interband diode lasers
Intersubband cascade lasers | InGaAsSb/GaSb
cascade lasers

diode lasers
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GaSh-based laser

GaSb-based semiconductor lasers can target numerous gas

« GaSh-based type-l diode lasers
* InGaAsSb/AliInGaAsSb QWs
* Viability proven in the 2- to 3.3-um regime.

* Both professor Gregory Belenky’s group from SUNY at Stony
Brook and James Gupta’s group from National Research
Council of Canada have developed diodes with emission above
3-pm.

+ Driven by mature, low-power consumption, and reliable 3.27
pum source for methane detection

 GaSbh-based type-ll interband cascade lasers
* Developed by Rui Q. Yang

* Multiple quantum well, hole and electron injector stages to emit
multiple photons.

* Jerry Meyer’s group at Naval Research Lab (NRL) and
nanoplus GMBH have developed single-mode ICLs near and
below 3-um.

» Driven by low current threshold, high optical output power at
3.57 um for HCI detection
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Diode laser structure
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GaSh-based LC-DFB laser fabrication

Ridge waveguide etched
~2-um deep using a

Define 4-um wide
ridge waveguide

with optical BCI,/Cl, plasma
lithography
E-beam lithography Add steps for double-
ridge structure

- Deposition of SiN, ~400-nm
&« followed by ~4-um thick
electroplated Au top contact

Etching of second order
Bragg gratings
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GaSh-based LC-DFB laser fabrication

LC-DFB diode laser

Waveguide
core

1/29/2018

» Fabrication of 4-um wide ridges, grating
pitch A=meNn (m=1,2,3,...), duty cycle
30%.

» Laterally-coupled distributed feedback
gratings were developed to avoid
etching through the active structure due
to reliability concerns.

* Gratings do not penetrate into the top

barrier close to the ridges, but do so far
from it.

SPIE Photonics West

LC-DFB IC laser

DFB laser architecture for IC lasers
used a double-ridge design due to
current spreading in the active region.

It reduces threshold current by a
factor 6.

Hybrid configuration where the active
region is etched all the way through,
but this is done far from where the
optical mode is generated

jpl.nasa.gov
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Diode performance
2.65 um
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Current threshold 160 mA at 20 °C, and a tuning rate of 0.27 nm/°C
The optical spectra measured with a FTIR shows a side-mode
suppression ration (SMRS) over 25 dB
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Current threshold 110 mA at 20 °C, and a tuning rate of 0.33 nm/°C
The optical spectra measured with a FTIR shows a side-mode
suppression ration (SMRS) over 25 dB
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Diode performance

2.65 um

Constant current mode: 500 mA

Base temperature: 40 °C
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Peak wavenumber stabilizes after 100-200 hours
The change in peak wavenumber is less than 2 cm™?

Measured red-shift in wavelength emission

Resistance increased of 3 mOhm across the laser
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3.27 ym

Constant current mode: 350 mA

Base temperature: 30 °C
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Peak wavenumber stabilizes after 100-300 hours
The change in peak wavenumber is less than 1 cm™?

Measured red-shift in wavelength emission

Resistance increased of 17 mOhm across the laser



IC laser emitting near 3.57 um performance

4 25 Constant current mode: 200 mA
LC-DFB =
/.
357 Smm /2 Base temperature: 40 °C
3 4727, s
, Wavenumber [cm™'] 27077 E .
—25 2804 2800 2796 36“0/////////{" 5 20 1 . . . ‘ : - 15 T T T
= _ DA 15 § =il Device 1 1 g Device 1
% 2f 2 4 5 = 18 —— Device 2 E’ 1.0k —+—Device 2|
E 15 g 03 Evef :g::ﬁ:i ] 2 —‘—ge"?ce 3
£ ] 5 14 |, i @ —— Device 4
2 g W e 05F i
1 3568 3572 3576 5 8 812 o S S
05 Wereleoath. o) =10 ’\_V,.,»W ] 2 00 ]
o £
0 = . " 0 5 8r : =]
0 50 100 150 200 250 [e] C 05+ —
Drive current [mA] & 6 E g
o ©
2796 — =E ] 20t .
2767 LO-DFE Av/Al =30 em™'/A 12578 O 2f 1 E
— 2708 Zmm |a.s74 06 500 1000 1500 2000 2500 3000 a-tsg 500 1000 1500 2000
TE ’ E Burn-in time (h) Burn-in time (h)
5 2799 =
€ 2a00 '3'572§ Current threshold 100 mA at 36 °C, and a tuning rate of 0.43 nm/°C
§ 2501 746 |5 &7 g The optical spectra measured with a FTIR shows a side-mode
3 a0z it -8 suppression ration (SMRS) over 25 dB
o =
-1 —HT=40°C 5 ggg
2803 M AVIAT=034em™°C | _g_ T ggec || .
—0—T-36°C * Peak wavenumber stabilizes after 100-300 hours
2804 — ; - : : i : ) .
I gy 220 240 0 * The change in peak wavenumber is less than 1 cm'?
Forouhar et al., Appl. Phys. Lett. 105 (2014) * Measured red-shift in wavelength emission

¢ Resistance decreased of 6 mOhm across the laser
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Failures

Stress due to CTE mismatch Device oxidation
and poor solder flow

Break

Eutectic
AuSn

* High aluminum content in cladding layers.

* Great laser performances.

* Reliability issues due to rapid oxidation of high
aluminum-content layers causing delamination.

* Reduced aluminum content in cladding layers
solved the oxidation issues.

CTE mismatch between submount and laser due to
requirement in submount material.

Poor solder flow, and the use of eutectic AuSn (hard
solder) caused the device to break due to the CT
mismatch between the laser and submount.

Problem was solved using indium solder (soft solder).
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Packaging of 3.27 um laser

.||1|lt

Effort in reducing size and alignment complexity,
replaced 3 lens collimator with a single lens inside a
package with same form factor through a
collaborative effort with Achray Photonics.

Highly divergent and asymmetric beam.

Single-lens collimator delivers outstanding beam
profile measured from lensed package at Heriott
cell entrance to the far mirror!
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Laser far-field emission profile before packaging
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Performance — Vib and shock testing

0.100f
* Thermal Cycling _—
* -40°Cto +80 °C, 8 cycles )
* Leak Testing g’
* Leak rate of 1.5 x 108 cc He/s after thermal cycling .
. . . 0.005}
* Random vibration based on TLS requirements
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* 3 tests per direction, 2 directions per axis 20 T

¢ 18 shock loads total
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Performance — Vib and shock testing of 3.27 um laser

—— Before vib and shock test
After vib and shock test
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Optical beam 12 cm away from the laser package

Before environmental testing After environmental testing

* Current threshold, voltage, and output power
do not change with environmental testing

* Emitted wavelength as a function of drive
current remained constant

* Optical beam wasn’t affected by the
environmental testing meaning the lens
mounting scheme isn’t affected by typical
environmental conditions

SPIE Photonics West



Voltage (V)

Before environmental testing

Intersubband cascade lasers up to 10 um

9.92 um laser
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After environmental testing

4.82 um laser
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We developed semiconductor laser sources up
to a wavelength of 10 um that are suitable for
space applications
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Planetary structure and evolution

Conclusion

* We have fabricated and tested reliable lasers at 2.65 um,
3.27 um, and 3.57 um

* We have developed and tested 3.27 um semiconductor

lasers that are suitable for space applications bster, JPL

* We have developed semiconductor lasers for space
applications that covers a wide mid-IR wavelength range

Future work

* Space qualification of IC lasers

* Lifetime measurements of lasers

* Development of Venus and Saturn probes

* Development of gas sensors for the ISS and Orion

* Development of novel gas sensors for Earth and climate
sciences

J. Anderson, Harvard Univ. Liz Moyer, Univ. Chicago
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