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Abstract. Modeling languages (like UML and SysML) are those used in model-
based specification of software-intensive systems. Like programming languages, 
they are defined using their syntax and semantics. However, both kinds of lan-
guages are defined by different communities, and in response to different require-
ments, which makes their methodologies and tools different. In this paper, we 
highlight the main differences between the definition methodologies of modeling 
and programming languages. We also discuss the impact of these differences on 
language tool support. We illustrate our ideas using examples from known pro-
gramming and modeling languages. We also present a case study, where we an-
alyze the definition of a new modeling language called the Ontology Modeling 
Language (OML). We highlight the requirements that have driven OML defini-
tion and explain how they are different from those driving typical programming 
languages. Finally, we discuss how these differences are being abstracted away 
using new language definition tools. 
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1 Introduction 

Model-driven engineering (MBE) is a methodology that focuses on creating and ex-
ploiting models in the engineering of software-intensive systems. A model, expressed 
in a modeling language, is typically used to capture, communicate, and analyze the 
design of a software system. In a variant of the methodology, called model-driven de-
velopment (MDD), the model is then transformed using a code generator into code in 
some programming language. 

Both modeling and programming languages are computer languages that are defined 
in terms of their syntax and semantics. The syntax specifies the abstractions that can be 
used to describe a system, whereas the semantics specifies the meanings assigned to 
these abstractions. Moreover, the syntax can be specified in two levels: abstract and 
concrete. The abstract syntax specifies the abstractions or building blocks of expres-
sions in a language (e.g., classes, fields, methods in the Java language) independently 
of their representations. The concrete syntax specifies the representations (using textual 
or graphical notation) of those abstractions. Both syntaxes are often mappable to each 
other, although the typical direction and completeness of these mappings may vary be-
tween modeling and programming languages. 
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The syntax of a programming language like Java, Scala or C++ is typically specified 
using a context-free grammar expressed in a notation like Backus-Naur Form (BNF) 
[1]. A BNF grammar consists of a set of terminal symbols, non-terminal symbols, and 
production rules (in the form <non-terminal> ::= <expression>) that transform each 
non-terminal into a sequence of terminals and/or non-terminals. This specifies the con-
crete textual syntax of a programming language. Moreover, the abstract syntax is also 
(automatically) derivable from such grammar. It is represented as an abstract syntax 
tree (AST) that is made up of non-terminal nodes. However, such AST is context-free. 
Performing context analysis (gathering and checking semantics) on the AST is typically 
encoded manually in some imperative programming language. 

On the other hand, the abstract syntax of a modeling language, like UML [2], SysML 
[3] or BPMN [4], is typically specified using a meta (higher-level) modeling language 
like Meta Object Facility (MOF) [5]. A MOF-based metamodel specifies the abstrac-
tions of a language as meta classes, that have properties, operations, relationships (e.g., 
generalizations, compositions, cross references) to other meta classes, and well-
formedness rules, expressed in a rule language like the Object Constraint Language 
(OCL) [13]. Thus, unlike a BNF grammar, a MOF metamodel captures the semantic 
context of a modeling language (at least partially). Moreover, the concrete syntax of a 
modeling language is typically defined independently of the abstract syntax. There can 
be several concrete syntaxes for a language and each of them can be textual and/or 
graphical. While there are some standards that can be used to describe those concrete 
syntaxes, and their relationship to the abstract syntax, they are typically defined less 
formally using English prose. On the other hand, there exist some de facto frameworks 
that are widely used to specify those concrete syntaxes. (More on this in section 2.2.) 

Furthermore, modeling languages differ from programming languages in terms of 
their tooling concerns and approaches. For example, modeling languages tend to have 
standard APIs, hence many general-purpose tools (e.g., query engines, transformation 
engines, visualizers) can be developed generically for them. Also, models are often 
stored in persistent storage in terms of their abstract syntax, as opposed (or in addition) 
to their concrete syntax. This persistence is often standardized (in XML or JSON). Also, 
models can grow in size dramatically and hence sometimes get persisted in databases 
(as opposed to files) to enhance their scalability. Also, in a collaborative editing envi-
ronment, models often need to be compared and merged in terms of their AST as op-
posed to the persistent format. Models also often need to be visualized using a variety 
of notations and viewpoints. 

In this paper, we show how the methodology of defining modeling languages often 
differ from that of programming languages, in terms of abstract syntax, concrete syn-
taxes and semantics. We also discuss the implications of these differences on language 
tooling concerns and approaches. We also report on a case study where a new modeling 
language, called the Ontology Modeling Language (OML) [6], has been defined. We 
highlight the requirements of OML, discuss how some of them may be different than 
typical ones for programming languages, and show how they have been addressed in 
the modeling language methodology. In addition, we reflect on the state of the practice 
in language definition today and highlight some technologies that have the potential to 
bring the two approaches closer together. 
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The rest of the paper is organized as follows. Section 2 describes the differences in 
the methodologies for defining programming vs. modeling languages. A discussion of 
the impact of these differences on language tooling is given in section 3. Section 4 
presents a case study where the OML modeling language has been defined. Some re-
flections on the state of the practice are offered in section 5. Finally, section 6 concludes 
the paper and outlines future works. 

2 Definition of Modeling vs. Programming Languages 

In this section, we describe the different methodologies of defining programming and 
modeling languages. We structure the description along three dimensions: abstract syn-
tax, concrete syntax, and semantics. 

2.1 Programming Language Definition 

Concrete Syntax. The concrete syntax of a programming language is typically textual 
and specified with a context-free grammar that is expressed using a common notation 
like Backus-Naur Form (BNF) or Extended BNF (EBNF) [7] (which helps deal with 
some limitations of BNF like the definition of repeatable elements). Such notation al-
lows specifying the textual syntax in two levels: a lexical level and a grammar level. 
The lexical level is specified with regular expressions that determine how characters 
form tokens (terminals). The grammar level is specified with production rules that de-
termine how tokens (terminals) form phrases (non-terminals). For example, the follow-
ing BNF grammar snippet specifies the syntax of simple algebraic expressions: 

 
 <expr> ::= <term> "+" <expr> |  <term> 
 <term> ::= <factor> "*" <term> |  <factor> 
 <factor> ::= "(" <expr> ")" |  <constant> 
 <constant> ::= number 
 

With such grammar, the expression ‘(1 + 2) * (3 + 5)’ can be represented as a valid 
expression in the grammar. First, a lexer turns the sequence of characters into terminal 
tokens (e.g., ‘(‘, ‘1’, ‘+’, ‘2’, etc.). Then, a parser groups the terminals into non-termi-
nals that are added as nodes in an abstract syntax tree (AST) using the BNF production 
rules. For example, the AST of the above expression can be represented in memory as 
[term, [factor, [expr, constant, constant]], [factor, [expr, constant, constant]], where 
each node is represented as [parent, child1, child2, …]. When such AST is printed, it 
can show as [‘*’, [‘(‘, [‘+’, ‘1’, ‘2’], ‘)’], [‘(‘, [‘+’, ‘3’, ‘5’], ‘)’]]. Both the lexer and the 
parser for a programming language can usually be auto-generated from the BNF gram-
mar of a language, as supported by tools like Lex-Yacc [8] or Antlr [9]. 

 
Abstract Syntax. As mentioned before, BNF is a context-free grammar, which means 
the AST produced based on it is also context free. This means that the AST just shows 
the composition of the non-terminals, without interpreting what they semantically mean 
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nor how they are related semantically to each other. This is left to an interpreter that 
processes the AST and either adds to it semantic context, or produces another tree with 
semantic context. To clarify what is meant by this, consider the following example pro-
gram file (example.java) expressed in the Java language: 
 
package a; 
import a.b.C; 
public class D extends C { 
} 
 
This file could be parsed using a (pseudo) Java BNF grammar as [‘example.java’, 
[package, ‘a’], [import, ‘a.b.C’], [class, ‘D’, [super, ‘C’]]]. With this AST, we can see 
the structure of the Java file, but what we cannot see yet is how the nodes of that struc-
ture relate to each other. For example, the fact that class D belongs to package ‘a’, and 
that class C belongs to package ‘a.b’ is not automatically inferred by the parser. Rather, 
this information is added by the Java compiler that processes the AST to add the type 
information and creates the cross references. Only then, the AST of a program becomes 
ready to be checked for well-formedness. A compiler is usually coded manually as a 
visitor pattern over the AST. 

 
Semantics. The semantics of a programming language refers to the formal meanings 
of the abstractions of a language. Three kinds of semantics can be identified: 
 

• Denotational semantics: where language abstractions are mapped to mathe-
matical objects that describe the meanings of those abstractions. 

• Axiomatic semantics: where assertions about language abstractions and their 
relationships to other abstractions are specified 

• Operational semantics: where abstractions are interpreted as transitions be-
tween state in some state machine. 

 
While some of these semantics (e.g., axiomatic) can be checked by a compiler, others 
(e.g., operational) are checked at run-time. Bothe the compiler and the runtime system 
are different applications that are written separately. 

2.2 Modeling Language Definition 

Abstract Syntax. The abstract syntax of a modeling language is explicitly specified as 
a metamodel (a higher-level model) in a formalism such as the Meta Object Facility 
(MOF), defined by the Object Management Group (OMG). MOF is used to define 
many popular modeling languages like UML and BPMN. MOF is defined in two levels, 
Complete MOF (CMOF) and Essential MOF (EMOF). The latter is much simpler and 
has more adoption in the industry thanks to its popular Java implementation on the 
Eclipse platform called Ecore, which is provided by the Eclipse Modeling Framework 
(EMF) [11]. Moreover, Ecore itself has a textual syntax called Xcore [12]. 
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A metamodel, defined in Ecore, specifies a modeling language as a set of interrelated 
classifiers. A classifier can either be a primitive type or a class.  Primitive types, like 
Integer, Boolean, and String classify literal values. Classes, on the other hand, represent 
abstractions in the language. A class can have a number of structural features and op-
erations and can specialize a number of other classes (in a taxonomy). A structural fea-
ture can either be an attribute, typed by a primitive type, or a reference, typed by a class. 
An operation, which may have a number of input parameters and a return type, repre-
sents behavior offered by the class. A class can also be constrained by a set of invariants 
expressed in a language called OCL, which supports a subset of first order predicate 
logic. In addition to invariants, OCL can also be used to specify body conditions of 
operations (i.e., conditions on the results of operations). 

Unlike the abstract syntax of programming languages, which is generated in memory 
as a result of parsing and not persisted, that of modeling languages is typically persisted 
independently of the concrete syntax, and especially when the concrete syntax is only 
partial, i.e. does not represents all the information. A common specification for persist-
ing MOF models is called the XML Metadata Interchange (XMI) [14], which maps the 
MOF syntax to XML. 

It is also worth noting that MOF is not the only formalism to specify modeling lan-
guages in. Another common on is a UML profile, which is UML’s extensibility mech-
anism. A UML profile creates a language with abstractions (called stereotypes) that are 
extensions of some meta classes of UML. One of those profile-defined languages is 
SysML, which extends UML to allow for modeling systems. An example of a SysML 
stereotype is called Block, which extends Class from UML to model a physical block. 

 
Concrete Syntax. The concrete syntax of programming languages is usually defined 
as a view on its abstract syntax. Specifically, for meta classes in a metamodel, there 
could be rules in a concrete syntax specification that define how instances of those meta 
classes are depicted. A modeling language can have one or more concrete syntaxes, 
each of which can be textual or graphical. 

 
Textual Concrete Syntax. While there is no dedicated specification for the specification 
of the textual syntax of a modeling language, there is a specification from OMG, called 
Model to Text (MTL) [15,] that can be used to map the abstract syntax to some textual 
notation. The specification allows defining a textual template with embedded tags that 
have OCL expressions that query the model and convert the information into text. An 
implementation of this specification for EMF-based models exists and is called Acceleo 
[16]. However, MTL does not aim at producing a canonical mapping from an abstract 
syntax to its textual syntax, nor does not support the other mapping direction. 

Furthermore, one technology that has become the defacto standard for defining the 
textual syntax of EMF modeling languages is called Xtext [17], which support bidirec-
tional mapping between an EMF-based metamodel and an EBNF grammar for the lan-
guage. Xtext supports both the generation of a metamodel from a given EBNF grammar 
and vice versa. Either way, Xtext provides the ability to specify a model using text that 
conforms to an EBNF grammar and automatically parses it in memory into the corre-
sponding instance of the metamodel. The opposite direction is also supported. 
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Graphical Concrete Syntax. Modeling language specifications have historically de-
scribed the graphical syntax informally using English prose. However, recently, an 
OMG specification, called Diagram Definition (DD) [18], emerged to address this lim-
itation. DD allows the specification of a graphical syntax by specifying a unidirectional 
mapping from the abstract syntax metamodel of a modeling language to a graphical 
notation metamodel (e.g., of 2D graphics). This model-to-model mapping can be spec-
ified using a MOF-based mapping language like the Query/View/Transformation 
(QVT) [19]. An implementation of this specification is provided for EMF in the Papy-
rus modeling tool [20]. 

Furthermore, there exist several technologies that support the implementation of 
graphical syntaxes for EMF-based modeling languages. The first is the Graphical Mod-
eling Framework (GMF) [21] and second is Sirius [22]. Both technologies support bi-
directional mapping between an abstract syntax model and its graphical notation. How-
ever, GMF supports an imperative-style mapping, while Sirius supports a declarative-
style mapping (using a mapping model). 

 
Semantics. Unlike a BNF grammar for a programming language, the abstract syntax 
for modeling language is not context-free, but rather declaratively specifies the axio-
matic semantics of the language. For example, the UML metamodel specifies that meta 
class UML::Class can reference another UML::Class as its superclass, contains one or 
more UML::Property as attributes, each of which references its UML::Type, etc. Also, 
the UML::Type meta class has a well-formedness rule expressed in OCL as ‘not self-
>closure(supertype)->contains(self)’, which means a type cannot have cyclic inher-
itance. This means just by using the metamodel, we can check the conformance of a 
model to the abstract syntax, including its axiomatic semantics. 

However, unlike programming languages, many modeling languages do not have (at 
least complete) denotational nor operational semantics. For example, the semantics of 
the UML has a fair amount of variability that is open to semantic interpretation. For 
example, the direction of the association arrows indicate that it is efficient to navigate 
from the source object to the target object of the association, but it is a variation point 
what this exactly means. The focus of those modeling languages is on communication 
of ideas rather than reasoning, simulation or execution. For example, the Business Mo-
tivation Model (BMM) [23] language is a way to describe the strategy for a business. 

However, some modeling languages have formal semantics, and in those cases the 
(denotational and operational) semantics are specified similarly to programming lan-
guages. For example, Foundational UML (fUML) [24] is an executable language that 
provides well-defined operational (execution) semantics for a subset of UML. 

3 Tooling of Modeling vs Programming Languages 

In this section, we discuss the differences between the tooling concerns of modeling 
and programming languages. These differences are mostly due to differences in lan-
guage engineering requirements between the two. We structure the discussion along 
several axes, and relate them to the methodologies in section 2 then it makes sense. 
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3.1 API 

The API of a language refers to the interface through which a description specified in 
the language can be manipulated by tools on a given platform. Examples of such tools 
are editors, compilers, visualizers, interpreters, etc. In the case of a programming lan-
guage, there is typically no specification of an API, at least not a single API. However, 
tools, like Antlr, can usually generate an API that corresponds to the context-free AST 
of the language, along with a visitor pattern that can be implemented to add semantic 
annotations (e.g., typing and cross references) or generate another context-specific API, 
which can used to perform further analysis like execution, visualization, etc. 

On the other hand, modeling languages tend to have API that is fully derived from 
the metamodel, hence already incorporates all typing and cross referencing. Such API 
includes a factory pattern to instantiate every concrete class, getter and setter methods 
to access properties of classes and methods corresponding to the class operations. In 
addition, the generated API often extends an abstract (reflective) API provided by the 
tool (e.g., EMF) for all languages. Such API allows the definition of generic tools (e.g., 
editors, query engines, transformation engines) that work on different modeling lan-
guages in a consistent fashion. 

3.2 Editors 

An editor for a language allows creating descriptions in that language. They support 
features like content assist, auto completion, validation, syntax highlighting, format-
ting, refactoring, etc. Many of these features have some aspects that apply generically 
to all languages (in a given family), and some aspects that are specific to a language. 
Therefore, it is common to implement editors using frameworks that provide those ge-
neric aspects and can be extended to support the specific of a given language.  

One such framework for programming languages is the Language Server Protocol 
(LSP) [25], which defines a protocol used between an editor and a language server that 
provides services like auto completion, go to definition, find all references, etc. The 
LSP has been implemented by several editors like Eclipse and Visual Studio Code for 
a variety of programming languages like Java, Python, and C++. In addition, editors 
for modeling languages with textual syntaxes, like those defined with Xtext, also im-
plement the LSP. But, thanks to the reflective API provided by EMF, the implementa-
tion of LSP can be done in a generic way for all modeling languages. 

Similarly, modeling languages with graphical syntaxes have editor frameworks (e.g., 
GMF and Sirius) that can support modeling languages generically thanks to the reflec-
tive API of EMF. For example, deleting an object from a model can almost always be 
implemented generically for any language, since removing an object from a model re-
moves all its contained elements and their cross references. 

It is also worth noting that since a modeling language can have multiple (textual or 
graphical) concrete syntaxes, that their editors or IDEs can allow working with those 
different concrete syntaxes or switching between them. 
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3.3 Persistence 

Both programs and models can be stored in persistent storage. However, they differ in 
what gets stored and how it is stored. For a programming language, the concrete textual 
syntax is what get stored and it is almost always stored in files. The abstract syntax, on 
the other hand, is derived in memory when the files are parsed by compilers. 

On the other hand, for a model, what gets stored can be either the abstract syntax 
only, the concrete syntax only, or both. For example, when a language has a textual 
concrete syntax, that syntax is what gets stored only, since the abstract syntax can un-
ambiguously be derived upon parsing. However, when a language has a graphical syn-
tax, both the graphical syntax and the abstract syntax are stored (together or in separate 
storage). In this case. the graphical syntax would contain its own details (layouts, styles) 
and reference the abstract syntax for the sematic details. Moreover, unlike a program, 
a model can also be defined exclusively using its abstract syntax APIs. In this case, only 
the abstract syntax is stored. When the model is stored in files, there are standards (e.g., 
XMI) that provide generic persistence rules based on the model’s metamodel. This re-
lieves the language developer from specifying a language-specific persistence format. 

Furthermore, unlike a program, a model can also be stored in a database. While there 
are no standards for this, there are some technologies that support this like Connected 
Data Objects (CDO) [26], which is able to persist an EMF model in databases. This is 
possible thanks to the metamodel of the language and its EMF reflective API. 

3.4 Configuration Management 

Configuration Management (CM) refers to the ability to manage a program or a model 
in a repository that supports branching and version control. Many file-based CM sys-
tems, like Git [27], supports this generically. An important feature of those systems is 
the ability to compare versions of the files and calculate their differences. This supports 
auditing the change history of a file, but is also a prerequisite for merging changes to 
the same file by different contributors, which may have conflicts to resolve. 

The compare/merge feature is therefore important to both programs and models 
since they are expected to have multiple contributors. In the case of programs and mod-
els with textual syntaxes, the typical support calculates textual differences. However, 
such support is not ideal because non-conflicting changes may sometimes appear on 
the same lines, hence often get misclassified as conflicts. 

In the case of models that have abstract syntaxes, textual differencing is not effective 
as users do not typically work with the textual storage format directly. Instead, thanks 
to the reflective API of metamodels, there exist differencing and merging frameworks 
(e.g., EMF Compare [28]) that work on the model level, showing the users the changes 
in terms of the abstractions they work with. However, those changes are often at a lower 
level of abstraction than the actual editing operations that caused them in the editor. 
That is why some differencing frameworks offer ways to aggregate the lower changes 
into higher level changes. An example of this situation is when a model also has a 
graphical syntax that is stored separately. Changes in related abstract and graphical 
syntaxes can be correlated and presented together. 
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3.5 Extensibility 

Extensibility refers to the ability of syntax or semantics of a language to be extended to 
cover other concerns. In the case of programming language, this is often a feature that 
needs to be built into the language. For example, Java supports the notion of annotations 
that can be put on its main abstractions (e.g., classes, attributes, methods) to add more 
information to them. In this case, interpreters can be developed to process those anno-
tations (e.g., insert extra code in methods to implement a @precondition annotation). 

Similarly, modeling languages can each have its own extensibility mechanism. For 
example, UML’s extensibility mechanism is the UML profile, which provides a set of 
stereotypes that can apply to UML elements to tag them or possibly add new attributes. 
However, another extensibility mechanism may be defined by the meta language itself, 
thus inherited by all its languages. For example, EMF provides an abstract class that 
supports having key-value annotations. Meta classes inheriting from this abstract class 
give themselves this extensibility feature. 

3.6 Integration between Languages 

It may sometimes be desirable to integrate different languages together. For example, 
one programming language may embed expressions from another programming lan-
guage that is better able to address a concern (e.g., it is possible to embed expressions 
in Assembly within a C program). Another example is a modeling language that allows 
its elements to reference elements from another language (e.g., BPMN allows its ele-
ments to reference elements from any other model including UML). In both cases, the 
language definition can be designed to allow such support (both BNF and MOF allow 
a language to import definitions from other languages). 

However, in modeling languages, this integration can also be free if one language is 
an extension of another (or of a common parent language). This is because when a class 
in a modeling language references another class, objects of the first class can reference 
objects of the second class or any of its subclasses, even if they are not defined by the 
same language. Moreover, if the reference is typed by the most abstract base class (de-
fined by the meta language), then it can point to any object in any language. 

4 Case Study 

In this section, we report on a case study where we analyze the methodology of defining 
a new modeling language for a data warehouse system. We show how the language 
engineering requirements for this modeling language differ from those of a typical pro-
gramming language, which also explains the differences in methodology and tool sup-
port. We first define the language requirements then analyze them. After that, we define 
the new language itself, specifically its abstract syntax, concrete syntax and semantics. 
Finally, we explain how this definition addresses the language requirements. 
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4.1 Language Requirements 

The language we focus on is called the Ontology Modeling Language (OML), which 
was developed at the Jet Propulsion Laboratory (JPL) to be the lingua franca of a new 
data warehouse system for systems engineering. The basic requirements for the lan-
guage include the ability to represent multi-viewpoint descriptions of a system that are 
authored in different system authoring tools, check the well-formedness and con-
sistency of those descriptions, configuration manage them, and make them available 
for analysis and reporting. 

4.2 Requirement Analysis 

The main requirement of the language is support multi-view knowledge representation. 
Hence, the first candidate language that was considered for that was the Web Ontology 
Language (OWL) 2 [29]. OWL 2 has desirable characteristics that can help address this 
problem: a) it supports organizing information as triples (subject, predicate, object) in 
different ontologies, which facilitates tracking the provenance of information coming 
from each authoring tool, and b) supports storing the triples in textual files using mul-
tiple formats (e.g., XML, JSON, N-triples), which can be easily configuration managed 
in widely available file-based C/M systems (like Git).  

Moreover, since OWL 2 supports multiple sublanguages, one of them was chosen, 
which was OWL 2 DL (Description Logic). This sublanguage a) has description logic 
semantics, which provides good expressive power for system descriptions, b) supports 
inference-based reasoning, which can help check the well-formedness and consistency 
of system descriptions, c) has a defacto Java based API called Jena [30], and d) supports 
an expressive pattern-based query language called SPARQL [31]. 

However, OWL 2 DL also has some undesirable characteristics for use on this prob-
lem, including: a) there are multiple ways of using OWL 2 DL to encode the system 
descriptions, some of which can lead to unexpected results or cause scalability issues 
during the reasoning process, b) the OWL syntax is at a lower level of abstraction mak-
ing the system descriptions verbose, c) the storage of triples in a file is not stable as the 
collection is not ordered, which may lead to unexpected deltas when ontologies (gen-
erated automatically from authoring tools) get committed to a C/M system, d) the lan-
guage has no visual notation that can help abstract out the information for users, e) the 
Java API is mutable, which makes it harder to use to perform expensive analyses in a 
distributed computing environment (e.g., Spark [32]), and f) the Java API cannot be 
used on an important tooling platform, which is a web browser. 

4.3 OML Language Definition 

The list of desirable and undesirable characteristics above has motivated the design of 
a new language, called OML, that retains the benefits of OWL 2 DL but also addresses 
its limitations in this context. In this section, we discuss the design of OML, specifically 
in terms of its abstract syntax, concrete syntax, semantics and API. 
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Abstract Syntax. OML is designed as a modeling language for ontologies, hence fol-
lows the common practice of defining the abstract syntax first with a metamodel. In 
this case, we chose to define it in Ecore (to leverage EMF’s large ecosystem of tools), 
and in particular using its Xcore textual syntax. A simplified subset of the language 
metamodel in Xcore is shown in Fig.1 (for brevity). 
 

package oml { 
   class Terminology { 
      String iri 
      Boolean isOpen 
      contains Terms [*] terms 
   } 
   abstract class Term { 
      String name 
   } 
   abstract class Entity extends Term {} 
   class Aspect extends Entity {} 
   class Concept extends Entity {} 
   class Relation extends Term { 
      refers Entity [1] source 
      refers Entity [1] target 
   } 
} 

Fig. 1. A simplified subset of the OML metamodel expressed in Xcore 

The main abstractions (e.g., oml:Terminology, oml:Concept, oml:Aspect, oml:Re-
lationship) are modeled as first class concepts in OML, as opposed to the much generic 
equivalent concepts in OWL 2 DL (e.g., owl:Ontology is used to represent either a 
terminology ontology or a description ontology, while owl:Class is used to represent a 
concept, an aspect, or a relationship between them). This makes modeling in OML more 
precise and also concise (more on this below). 

Also, other desirable features of OWL 2 DL are maintained in OML. For example, 
the ability to preserve the provenance of information by keeping the information ex-
ported from every system tool in a separate OML terminologies is supported. Also, the 
ability to specify design patterns [10] in foundational (base) terminologies then special-
ize them in every discipline terminology is preserved. Moreover, the ability to create 
terminologies with open or closed world assumptions is retained in OML. Also, all the 
structural feature collections (e.g., Terminology:terms) in the metamodel are defined as 
ordered so that the persistence of an abstract model is stable. 

 
Concrete Syntax. Several concrete syntaxes have been defined for OML to address 
different use cases. One of them is a textual syntax that was defined using an Xtext 
grammar (Fig. 2). The grammar is designed to work with the OML metamodel and is 
meant to be enable users to author ontologies with a text editor. This is mostly used to 
design terminologies representing the vocabularies of systems engineering disciplines. 
Such ontologies tend to be small in size, and configuration managed as text files. 
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grammar OML with org.eclipse.xtext.common.Terminals 
 
generate oml "http://OML" 

 
Terminology:  
  (isOpen?=‘open’)? 'terminology' iri=ID 
 '{' 
    (statements+=TerminologyStatement)* 
 '}'; 
 
TerminologyStatement: 
 Entity | Relation ; 
 
Entity: 
 Aspect | Concept; 
 
Aspect: 
 'aspect' name=ID; 
 
Concept: 
 'concept' name=ID; 
 
Relation: 
 'relation' name=ID '{'  
  'source' '=' source=[Entity] 
  'target' '=' target=[Entity] 
 '}'; 

Fig. 2. A simplified subset of the OML textual syntax expressed in Xtext 

An example of a model in OML representing a simple terminology of system struc-
ture is shown in Fig. 3. The terminology defines two concepts, a Block and an Interface 
and a relationship Exposes between them. An equivalent model defined in OWL 2 DL 
turtle format is shown in Fig. 4. Notice how the OML syntax is more readable, concise 
and accurate (all terms in the OWL 2 DL format are defined with owl:Class making it 
harder to understand the Exposes relationship for example). 

 

open terminology structure {  
   concept Block 
   concept Interface 
   relationship Exposes { 
      source = Block 
      target = Interface 
   } 
} 

Fig. 3. A simple model in OML textual syntax showing a structure terminology 
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<structure> a owl:Ontology . 
<#Block> a owl:Class . 
<#Interface> a owl:Class . 
<#Eposes> a owl:Class . 
<#source>  
   a rdfs:Property ; 
   rdfs:domain <#Exposes> ; 
   rdfs:range <#Block> . 
<#target>  
   a rdfs:Property ; 
   rdfs:domain <#Exposes> ; 
   rdfs:range <#Interface> . 

Fig. 4. A simple model in OWL 2 DL syntax showing a structure terminology 

Another concrete syntax that was designed for OML is the OML Zip representation. 
In this representation, elements of the same type in one OML ontology are represented 
together as a JSON array, ordered by ‘iri’, and stored in a JSON document (Fig. 5). 
Then all JSON documents that belong to one ontology are put together into a zip ar-
chive. This syntax is not meant for users to author in directly, but is rather constructed 
by API when system descriptions are read from system authoring tools and converted 
to OML in order to be managed by the data warehouse. This representation is efficient 
for this use case since terminologies in this case tend to be much larger in size than 
vocabulary ontologies, hence will have a smaller footprint in this compressed syntax. 
This format also allows writing an algorithm to detect differences between two OML 
models very efficient, as deltas can be reduced down to changed lines, as opposed to 
structural deltas that result from complex structural comparisons. Finally, this format 
allows every type to be stored as an array of objects of the same length and shape, which 
makes loading them into columnar databases efficient for analysis. 

 

“terminologies”: {[ 
  {“iri”: “structure”, “isOpen”: true} 
]} 
 
“concepts”: {[ 
  {“iri”: “structure#Block”, “name”: “Block”}, 
  {“iri”: “structure#Interface”, “name”: “Interface”} 
]} 

 
“relationships”: {[ 
  {“iri”: “structure#Exposes”, “name”: “Exposes”, 
   “source”: “structure#Block”,  
   “target”: “structure#Interface”} 
]} 

Fig. 5. A simple model in OML JSON Zip format showing a structure terminology 
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The last concrete syntax for OML is a high-level diagrammatic syntax that resembles 
a class diagram, and can be used to visualize the system description terminologies. This 
helps users understand the system design. Such diagrammatic syntax has been defined 
using the Sirius framework (Fig. 6). A terminology is shown with a box whose name 
appears in top left corner, a concept appears as a box within it with a centered text, and 
a relationship appears as an arrow from its source to its target with its name below. 
 

 

Fig. 6. A simple model in OML graphical notation showing a structure terminology 

Semantics. The axiomatic semantics of OML has been encoded in the OML meta-
model. However, its denotational semantics are defined by mapping its abstractions to 
those of OWL 2 DL, which has Description Logic semantics. This mapping (omitted 
here for brevity but alluded to by showing OML and OWL 2 examples in Fig. 3 and 
Fig. 4) is invoked before the OML ontologies is analyzed. The resulting OWL repre-
sentation is loaded into a database (a triple store), then an inference engine is run on it 
to deduce new axioms from asserted axioms. Both sets of axioms can then be queried 
using a SPQRQL expression sent to a SPARQL query endpoint using the Jena API. 

 
API. Defining the abstract syntax of OML with EMF provides it with a mutable Java 
API (e.g., factory pattern with named create methods, named getters/setter, etc.) that 
extends the framework-defined reflective API (e.g., EFactory::create, EObject::eGet, 
EObject::eSet, etc.). Such API allows OML to leverage the large EMF ecosystem of 
tools. For example, a textual editor was developed using the Xtext framework and a 
graphical editor was developed using the Sirius framework. Both editors can be used 
by users to author vocabulary terminologies. The Java API also simplifies the imple-
mentation of extract-transform-load (ETL) interfaces to system tools, which can read 
system descriptions, transform them to OML, and persist them in the OML Zip syntax. 

In addition to the default Java API, two other APIs were generated for OML based 
on the same abstract syntax metamodel (using custom code generators). One of them is 
an immutable functional API in Scala. This API is used to read and query OML data 
for analysis purposes. Thanks to the immutability of this API, it makes writing analysis 
scripts with it safer and easier to distribute (for example, on a distributed computing 
platform like Spark). The last API is a JavaScript API that allows manipulating OML 
data in web browsers, which is used to visualize OML data in web applications. 

Block Interface 
Exposes 

structure 
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5 Reflection 

After having discussed how the requirements of modeling and programming languages 
can be different, hence can affect the language definition methodologies and tooling 
concerns, the real question is whether the two approaches are fundamentally different. 

One may be tempted to think of modeling languages as typically informal, highly 
abstract, and visual until they learn that some modeling languages have very well-de-
fined execution semantics and textual notation (e.g., ALF [33]). On the other hand, one 
may think of programming languages as fundamentally low-level and general-purpose, 
until they learn about high-level programming languages that translates into other lan-
guages (e.g., Xtend [34] translating into Java, and JSX [35] translating into JavaScript) 
and learn about domain-specific languages (e.g., R for statistical computations [36]). 

It is important to realize that the language engineering requirements of both families 
of languages are getting closer and hence their methodologies and tools will too. For 
example, the Xtext framework allows a domain specific language to have both a meta-
model and an EBNF grammar. Which class would do you classify such a language in? 
It is in both. Another example is the LSP framework, which allows an editor to support 
multiple programming and/or modeling languages. 

6 Conclusions and Future Works 

Modeling and programming languages are both computer languages. However, there 
are different language engineering requirements deriving both of them. These usually 
stem from the difference in priorities and objectives of the communities defining them. 
This explain why the methodologies and tools for these languages are different.  

In this paper, we highlight and discuss the different methodologies of defining mod-
eling vs. programming languages, especially in terms of their abstract syntax, concrete 
syntax and semantics. We also discussed the implications of these differences on the 
language tooling, in terms of API, editor, persistence, configuration management, ex-
tensibility and integration between languages. We then reported on a case study where 
we analyzed how a new language, called OML, was designed to satisfy its unique re-
quirements. We then reflected on how these design decisions have addressed the re-
quirements and influenced the language’s tool support. 

Going forward, we plan to investigate ways to bridge the gap between modeling and 
programming languages, especially in terms of tool support. We believe that each com-
munity can learn a lot from the other. For example, we think that programming lan-
guage tools should have structural compare/merge support that is akin to that available 
to modeling languages. We also think that the semantic of modeling languages should 
be formalized in similar ways to programming languages. 
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