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« Two (originally uncoupled) questions:

1. Why can’t we do a better job of quantitatively assessing
and optimizing new measurements impact on
understanding of the climate system?

— Significant improvement in quantitatively tracing from measurement
to instrument design via system engineering approaches

—  Extend to “science system engineering” at higher level of
abstraction
2. Why can’t we have smaller uncertainties in sea level rise
by 21007

— Range from ~20 cm to ~200 cm
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Better quantitative characterization of these complex systems through the application of system engineering and

uncertainty quantification methods would enable:
« Improved science analysis results

* Improved science traceability for optimizing measurement system (mission and

instruments) design
 Improved prioritization of missions and instruments
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« Adjoint capabilities
« UQ analysis using
DAKOTA framework

Adjoint capability enables easy integration of real or simulated
observations for parameter estimation.

« Estimating the Circulation
and Climate of the Ocean

« Adjoint capabilities
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Parameter
values
applied as
constant
values for
100 yr
durations

Step 1 — single parameter sensitivity experiments

— Oceanl/ice melt rate; viscosity; basal drag; Surface Mass
Balance

Step 2 — Initial Monte Carlo analysis

— varying most influential parameters from step 1, over
extreme (high SLR) min/max range

— 1 and 2000 partition runs - equal area
Step 3 — refined Monte Carlo analysis

— More credible parameter mix/max for next 100 yrs

— 27 “smart” partitions — designed around drainage basins and
climate regions

Step 4 — scenario driven / time evolved parameter
change

— Future work

Each AIS UQ Monte-Carlo Experiment: Varied 4 parameters,
200 values each, 800 runs total for each experiment
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Ocean warming at ice interface potentially important for large SLR cases
 Ice shelf cavity interface water

. o Mean Melt Rate Results
tempe_rature Increas_e Of 2 C can (Pine Island derived cavity)
result in 20x to 30x increase In oealialnas
melt rate

— Credibility / Likelihood of 2° Crise  [150m/a ~390 m/a- palll
iIn Southern Ocean ice boundary N gl I
water in next 100 yrs is very low, but
Impact is high

 Measurement and prediction of
evolution of AIS ice cavity interface |~agm/a ~1
water temperature and knowledge
of heat exchange coefficient is
Important for constraining future
worst-case SLR

~2m/a ~4

Current best estimate heat exchange coefficients f

High end heat exchange coefficients
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How warm can it get?

Apply cavity specific potential temperature increase to cavity melt temperature
sensitivity, to get estimated melt rate upper bound for ~50-100 year horizon

«  Warm Circumpolar
Deep Water (CDW)
that is forced onto the
continental shelf mainly
drives present-day melt
In high-melt areas

« How do melt rates
change if CDW makes
It onto the shelf for
present-day “cold” ice
shelves?

Figure: Present temperature
maximum and potential future
temperature maximum given
by nearby CDW.
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What are potential (realistic) melt rates?

Apply cavity specific potential temperature increase to cavity melt temperature
sensitivity, to get estimated melt rate upper bound for ~50-100 year horizon

Determine melt rates based
on current CDW
temperatures around
Antarctica

Apply a multiplier to present- »s

day melt rates to raise up to
“realistic” melt rate potential

Figure: Melt rate
multiplication factors
derived from the CDW
temperatures, which give
a more realistic
heterogeneous distribution
vS. uniform increases of
rates.
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Q Model predict for current conditions is factor of O Model predict for future conditions is very large

2x or greater different from current observations

(>100m/yr)—grid resolution or other modelling
artifact
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SLE Sampling of smart partitions realistic which is “best estimate of current

w=0.32919 m, Min 95% = 0.152 m, Max 95% = 0.495 m conditions”):

SLE Sampling of smart partitions extreme Basal drag: (-15 to -25%) to

u = 0.62825 m, Min 95% = 0.295 m, Max 95% = 0.904 (+15 to 25%); O to -40%

SLE Sampling of smart partitions realistic, Shelf Collapse Viscosity: (-5 to -10%) to +5%;
>4 ) o ‘  u=0.53626 m, Min 95% = 0.407 m, Max 95% = 0.676 -60% 10 0 _
Q Realistic .\ | SLE Sampling of smart partitions extreme, Shelf Collapse Melt rate: 0 to (2x to ~200x) ;
3 melt rates ' u = 0.9932 m, Min 95% = 0.697 m, Max 95% = 1.235 m 0 to 10x
S Extreme
L melt rates
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Figure: Results from 100-year Antarctica Uncertainty Quantification runs. Text summarizes
parameters varied. PDF of sampling experiments, comparing sampling of extreme bounds
(black) with realistic bounds (red) over smart partitions. We also include curves resulting from
sampling of the same model, but with the collapse of all its ice shelves instantaneously at the
beginning of the simulation. The collapsed shelves model is sampled with extreme bounds (grey)
and with realistic bounds (purple). SLE = Sea Level Equivalent net mass loss (above flotation).
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Examples of parameter range differences for “realistic” vs

“extreme” runs (% relative to control, which is “best
estimate of current conditions”):
Basal drag: (-15 to -25%) to (+15 to 25%); 0 to -40%
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« Observing ice shelf melt rates (forcing and boundary
conditions) essential for predicting Antarctica’'s
contribution to sea level change

» Likely scenario for increased melt: warm CDW reaches
the continental shelf

« Extreme melt (10x current rates) likely to increase warm
Ice shelf contributions most but less realistic

« “Realistic” melt rates (current CDW temperatures) affect
cold ice shelves most (Filchner/Ronne)

 |ce shelf collapse affects Filchner/Ronne backstress

 Different climate scenarios (“extreme” vs. “realistic”) can
Inform observing system plans
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 Bedmap 1 vs Modified Bedmap 2: ~0.4m (~33%) mean
SLR difference at 100yrs for extreme climate scenario

« Residual uncertainty in AlS topography is ~ Bedmap1l /
Bedmap 2 correction

« Completing high resolution bedmap of AIS is a
quantifiably low risk / high pay-off measurement

Probability Density Function
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Implications

Pfeffer et al, 2008

Source for 2m upper bound in NCA. 1.1m of which

comes from AIS + GIS

Table 3. SLR projections based on kinematic sce-
narios. Thermal expansion numbers are from (22).

SLR equivalent (mm)
Low1l Low 2 High 1

Dynamics
SMB
Greenland total

dynamics
SMB
Antarctica total

Greenland

93 93 467
71 71
165 165

Antarctica
PIG/Thwaites dynamics
Lambert/Amery dynamics
Antarctic Peninsula

108
16
12

10
146

Glaciers/ice caps

Dynamics

SMB

GIC total

Thermal expansion

Total SLR to 2100

94
80
174
300

785

Likely extreme upper bound - Our results
indicate it is difficult to get this much ice out
of GIS, even under extreme conditions

Reasonable but not extreme upper bound:
Our results agree with there upper bounds
given conservative, but not extreme, AlS
parameters and boundary conditions.
However, if un-expected / extreme conditions
develop, AIS is capable of dynamically
sourcing substantially more ice in 100 yrs
(+1m)
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“Smart” Partitions

Climate split
~@2km
based
boundary

Drainage
basin based
boundary
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« General effect is to reduce the spread of sea level
contribution since now not all parts of AlS are assumed
to have the same parameter values

Probability Density Function
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