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Imaging Spectroscopy: Concept
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Applications

 Terrestrial domains

 Ustin et al., 2004; Jetz et al., 2016; Asner et al., 2017

 Aquatic environments

 Hochberg, 2011; Fichot et al., 2015

 Estimation of surface reflectance requires removal of
atmospheric effects

 Atmospheric constituents typically estimated from
radiance spectra

 ACORN (Kruse, 2004), ATCOR (Richter & Schlapfer, 2002),
FLAASH (Perkins et al., 2012), ATREM (Gao et al., 1993)

 Atmospheric correction mature and performs well for many
conditions (e.g. clear skies with near-nadir viewing)
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Problems with Current Approach

 Limits atmospheric information that can be
recovered

 Less accurate for certain observing conditions

 High water vapor, extreme viewing angles, high aerosol
loading, non-Lambertian surfaces

 Orbital missions will not have flexibility to wait for
optimal weather conditions

 Tropical and subtropical environments often show extreme
conditions that challenge existing approaches

 No uncertainty quantification
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Minimize “cost function” by optimizing model-measurement mismatch 

and using Bayesian prior where there is no information from measurements  
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state vector
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Advantages of Joint Estimation
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 Permits atmosphere/surface coupling, relaxes Lambertian assumption

 Uses information across the VSWIR spectral range to characterize
aerosols, water vapor and surface, improving accuracy of reflectance
retrievals

 Rigorous probabilistic formulation incorporates ancillary
measurements via the prior distribution

 Degree of Freedom (DOF) analysis permits evaluation of VSWIR
atmospheric information content

 Posterior uncertainty estimates for use in downstream analyses



Retrieval Comparison
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Iterative Retrieval
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Retrieval Results
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Retrieval Results
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Fast “Full Physics” RT
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 Two-stream exact-single-scattering (2S-ESS) model (Spurr and Natraj, 2011)

 2S computes multiple scattering field using two-stream approximation

 ESS computes single scattering field accurately, including atmospheric sphericity effects

 Incorporates state-of-the-art representations

 Delta-M scaling

 Nakajima-Tanaka (N-T) correction

 Surface BRDF

 Analytic Jacobians

 For calculations in a 20-layer atmosphere with 100 spectral points, 2S-ESS is
~800 times faster compared to DISORT with eight discrete ordinates in the
half-space

 Accurate to within 0.1% of an “exact” RT model, but with computational speed
comparable to two-stream models



2S-ESS Model Benefits

 Can be used for scenarios with heavy aerosol loading

 Systematic errors due to cirrus can be accounted for

 Opens up avenues for simultaneous retrievals of
surface, aerosols, water vapor and trace gases (e.g.
NO2, CH4, CO2)
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Emulation of RTM Ouput

 Nonparametric regression model

 More accurate alternative to lookup tables

 Permits very high dimensional state vectors

 Neural network models should enable many-frames-per-second
retrievals

 Five orders of magnitude speed improvement over MODTRAN-based
model with negligible accuracy penalty
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Future Work

 Improving aerosol retrievals by using better priors
(Kindel and Massie)

 Improving surface retrievals by using BRDFs

 Testing model using extensive AVIRIS-NG India
dataset

 Validation using in situ measurements
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