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Lessons Learned from OCO-2

e High accuracy and low bias are both essential

* High spatial resolution (footprint area <4 km?) critical for
— Quantifying emissions from compact sources

* Xco2 @anomaly associated with a given CO, injection is inversely
proportional to the area of the footprint

— Gathering full-column data in presence of patchy clouds
e Coverage: Imaging rather than sampling the CO, field

— Critical for tracking emission plumes and resolving
anthropogenic emission sources from the natural background

* Proxies (SIF, CO, and NO,) may be needed for attribution

* Improved remote sensing retrieval algorithms and carbon flux
inversion models are critical for exploiting the information
from space based greenhouse gas measurments
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Measuring CO, from Space

* Record spectra Retrieve variations in Validate measurements
of CO, and O, the column averaged to ensure X,,,accuracy
absorption in O, dry air mole of 1 ppm (0.25%)
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Cross-Calibration and Cross-Validation
Essential to Combine Data Products
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Creating a Combined Data Product:
Cross-Calibration and Cross Validation

* Pre Launch:

— Exchange information on best practice for pre-launch
instrument characterization

— Cross calibration of pre-launch radiometric standards
— Exchange of gas absorption coefficient and solar data
— Retrieval algorithm development/intercomparison
— Validation system development (TCCON, aircraft)

— Multi-Satellite OSSE’s — what do you gain with truly
coordinated observations

* Post Launch:

— Cross calibration of solar/lunar/Earth(vicarious:
RRV+?) observations

— Including exchange of solar and lunar standards

— Cross validation: TCCON, EM27/Sun, and aircraft
validation campaigns

— Continued retrieval algorithm
development/intercomparisons
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ACOS/GOSAT B7.3, and OCO-2 v7 XCO2

TCCON and other
standards have been
used to cross validate
0OCO-2 and GOSAT
Xcoo to extend the
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Validating Space-based Measurements
against International Standards

e GOSAT and OCO-2 data were validated against the Total Column
Carbon Observing Network (TCCON)

e TCCON is validated against the WMO standards profiles from in
situ instruments on aircraft

e Other standards, including aircraft campaigns (HIPPO, ACT-
America, Atom) also used

* These validation methods must be maintained and expanded to
support future observations from LEO, GEO and HEO platforms
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Improved Remote Sensing Retrieval
Algorithms are Needed

* Recent updates in the OCO-2 X, retrieval algorithm have
reduced both bias and scatter in the X5, product

— Version 8 (B8) updates include improved radiometric calibration,
improved O, cross sections, the addition of a stratospheric
aerosol layer, a more realistic, non-Lambertian BRDF, updated
cloud screening, and other smaller changes
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Quantifying Localized Sources
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@ Proxies, including NO, and CO are critical
for Attributing Sources of CO, Emissions
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OCO-2 Observations of the 2015-2016
El Niio
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How did the Carbon Cycle Respond to
the 2015-2016 El Nifo?

e OCO-2 was launched less than 9 months before the onset of
the intense 2015-2016 El Nino

e During recent El Ninos, the rate of CO, buildup has increased,
but there are several unanswered questions:

— What are the relative roles of the ocean and the atmosphere in
the observed CO, increases?

— What are the relative roles of drought, heat stress, and fire on the
emissions of CO, from land during El Nino?

— What are the implications of these changes for Climate/Carbon
Cycle interactions as the climate warms?

 The unprecedented resolution and coverage provided by
OCO-2 provides new ways to address these other questions
about interactions between the climate and carbon cycle

7 N
G =

CC2 15




Carbon system in the Tropical Pacific

CO2 OUTGASSING

Dijkstra [2006]

 Normal conditions: upwelling of cold subsurface waters that
have high potential pCO, + inefficient biological pump —
strong CO, outgassing

e El Nino conditions: deepening of thermocline, reduction in
upwelling, weakening of trade winds + more efficient
biological pump — decreases CO, outgassing by 40-60%
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2015-2016 El Nino: Ocean Response

SE Asia/lndone-
sia fire emissions
in Sep - Oct 2015

immediate ocean
response

larger lagged
terrestrial
response

large reduction in
CO, outgassing

<UD

Abhishek Chatterjee et al. (2017)

AT

cCO2

17




2015-2016 El Niino: Fires
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Xco2 €nhancements over
Indonesia observed by
OCO-2 between July
and November 2015.

Fire emissions estimates
from the GFAS and
GFED inventories to
emission estimates
obtained from OCO-2
data, using two analysis
approaches. The OCO-2
estimates are less than
70% as large as those in
the inventories.

18




“Top-Down” Flux Inversion Estimates

In situ CO,
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' Solar-Induced Chlorophyll Fluorescence (SIF)
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@ Solar Induced Chlorophyll Fluorescence (SIF)

(a) OCO-2 SIF @757nm (2015) (b) GOME-2 SIF @740nm (201 5)
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2015 El Nino and 2011 La Niha annual
biosphere fluxes and their differences
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2015-2016 El Nino: 3 Continents, 3 Stories

Reduced GPP Increased Fire
Respiration

SOUTH
EAST ASIA

AFRICA

AMAZON

AUSTRALIA

NBE (2015-2011), GtClyr
M T(2015-2011), K
M Precip (2015-2011), mm/day
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Key Results

« OCO-2, with its unprecedented coverage over the tropical
Pacific Ocean, provides a first-hand look at the space-time
evolution of atmospheric CO2 concentrations during the
2015-2016 EIl Ninho

e Oceans do contribute to the ENSO CO, effect

— Suppressed outgassing from the oceans happen early, followed
by a larger (and lagged) response from the terrestrial component

— The net increase in atmospheric CO, would be even larger in the
absence of this ocean outgassing

e The topical land biosphere response can vary from continent
to continent, due to the competing effects of drought, heat
stress and fire, all of which reduce CO, uptake

— These processes may play increasingly important roles as the
tropical climate evolves
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Summary

e Space-based remote sensing observations hold substantial
promise for future long-term monitoring of greenhouse gases

— These data complement existing ground-based and aircraft based
in situ data with increased coverage and sampling density

e The GOSAT and OCO-2 missions are beginning to
demonstrate these capabilities

— GOSAT and OCO-2 teams have pioneered methods for cross-
calibrating measurements and cross-validating products

— Their products have been combined to produce an 8-year record
that is now being used in studies of the global carbon cycle

A new OCO-2 data product (B8) has been delivered to the
Goddard Earth Science Data and Information Services Center
(GES-DISC) for distribution to the science community:

https://disc.gsfc.nasa.gov/datasets?page=1&source=0CO-
2%200C0%20SPECTROMETERS
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