Extreme rainfall drives a slow-moving landslide to
catastrophlc fallure
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1. Motivation



Motivation
Landslides

o Occur in areas with sufficient relief when gravitational forces exceed resisting forces

o Triggered by precipitation, earthquakes, river incision, human impact, sometimes no
obvious trigger

o Velocities ranging from meters per second (fast) to milimeters per year (slow).

Fast (m/s) Slow (m/yr)
Videos

Fast-moving landslide, Japan (m/s)

Slow-moving landslide, Wyoming (km/yr)

|k SRS s R 2 Active for
Failed S decades to
catastrophically centuries



https://www.youtube.com/watch?v=xsXQBnZ_xjI
http://www.youtube.com/watch?v=u99FnHi5-xA

Motivation

What controls landslide faillure mode?

Slow-moving landslides Fast-moving landslides
*Velocity-strengthening properties ¢ Velocity-weakening properties

April 2015 June 2017
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Motivation
Hazard

 Landslides claim thousands of lives and cost billions of dollars in
damages annually

« Numbers predicted to increase with population growth
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Motivation

Research Questions

1) How do slow-moving landslides respond to seasonal
rainfall?

« Velocity changes in response to seasonal rainfall (i.e.
pore-water pressure).

2) Can a slow-moving landslide fail catastrophically?
* Yes!

« Possible mechanisms include: large pore pressure

Increase, shear-induced dilatancy/compaction, or
change in landslide properties



Tools that | use
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a. Model Geometry
hilltop

Google earth




Satellite-based INSAR

Interferometric Synthetic Aperture Radar
* Remotely measures surface deformation during a time period
» Deformation measured along the satellite’s line-of-sight
* Interferogram represents the phase change between satellite

acquisitions

Pass 1: Pass 2: After
Before earthquake
earthquake

Image courtesy of COMET: Centre for the Observation and Modeling of Earthquakes and Tectonics

Advantages:

* Satellite orbits with regular
time interval (6 or 12 days for
Sentinel-1)

* mm-scale line-of-sight
sensitivity

* measures a continuous
deformation field

Limitations:

* Deformation rate limit
* Atmospheric signals

* Vegetation

* Observational bias



2. Slow-moving landslides



Slow-moving landslides
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INSAR map of Boulder Creek landslide, CA (2007-2011)
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| Tree vectors 1944-2006
g (Mackey and Roering, 2011)
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Handwerger et al., 2013



. Handwerger et
Seasonal Dynamics: 2007-2011 AL

* Seasonal velocity changes driven by precipitation

WY2007 WY2009 WY2010 WY2011
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Landslide hydrology

* Precipitation:
O Increases pore
pressure

o decreases
effective stress

o decreases shear
strength

=C+(0- p)u

Tc = shear strength, 0 = normal stress, p = pore
pressure, U = friction coefficient

Contact force vectors

=




Landslide hydrology
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Figure 10. Me:an hydrographs for the shallow, intermediate, and deep wells computed from
the hydrographs shown in Figure 9 (excluding well 18A).

MEAN WATER DEP

P = Pore pressure

D, = characteristic diffusivit
Z =depth

t =time




3. Study site
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Mud Creek landslide

June 2017




Mud Creek landslide




4. Results




Mud Creek landslide

NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar)
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Mud Creek landslide

Google Earth image (2015) Sentinel 1A/B INSAR time series
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Mud Creek landslide

Sentinel 1A/B T42 Descending
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Mud Creek landslide

Sentinel 1A/B T42 Descending
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Mud Creek landslide

Atmospheric rivers

horphed composte: 20717-02-14 12:00:00 UTC
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https://phys.org/news/2017-02-atmospheric-rivers-thought.html

* Extreme rainfall driven in part by multiple atmospheric rivers




Mud Creek landslide

Distribution of Landfalling Atmospheric Rivers on the U.S. West Coast
(From 1 Oct 2016 to 31 March 2017)

AR Strength AR Count*

Weak 11

Moderate 20

Strong 12

Extreme 3

Ralph/CW3E AR Strength Scale
B Weak: IVT=250-500 kg m™ s™*

Moderate: IVT=500-750 kg m™* 571
B stong: IVT=750-1000 kg m™ s2

Extreme: IVT>1000 kg m™ 571

*Radiosondes at Bodega Bay, CA indicated
the 10-11Jan AR was strong (noted as

moderate based on GFS analysis data) and
7—8 Feb AR was extreme (noted as strong)

Center for Western Weather
and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY
AT UC SAN DIEGO

45 Atmospheric Rivers have made landfall on the West Coast
thus far during the 2017 water year (1 Oct. — 31 March 2017)
This is much greater than normal

1/3 of the landfalling ARs have been “strong” or “extreme”
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Mud Creek landslide
Sentinel 1A/B T42 Descending
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* Displacement and velocity increase with precipitation

* WY2016 displays typical slow-moving landslide pattern

* Divergence from ‘typical’ seasonal velocity pattern during WY2017 -
may suggest a transition occurred




Mud Creek landslide

Sentinel 1A/B onset of catastrophic Boulder Creek landslide
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Landslides occur in the same lithologic unit and in similar
climate

Landslides display similar velocity pattern during WY 2016
Paul’s slide displays a more "typical’ velocity pattern during
WY 2017

Boulder Creek and Mud Creek display similar velocity pattern
except Mud Creek fails to decelerate!!




Summary

* Mud Creek landslide moved seasonally for a minimum of
5 years prior to its collapse

* Seasonal velocity changes driven by precipitation-induced
changes in pore-water pressure

* The extreme rainfall of WY2017 likely caused its ultimate
failure



5. Mechanisms to explain how a
slow-moving landslide can transition to
catastrophic failure



Potential Mechanisms

Slow-moving landslides Fast-moving landslides
*Velocity-strengthening properties ¢ Velocity-weakening properties




Previous models

S hear d | Iatan Cy m0d9| (Moore and Iverson, 2002; Iverson 2005)
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Porosity increases with displacement

* Reduces pore pressure and acts to slow down the landslide
Critical-state (i.e. maximum) porosity is reached

Porosity decreases with displacement

* Increases pore pressure and causes runaway acceleration



Previous models

Rate- and state-friction model ¢anawerger et ai. 2017

« Widely used in fault mechanics, but infrequently used in landslide mechanics

« Evolution of friction away from steady state value in response to changes in
velocity

11 Material parameters
bln(v/vy) - empirical parameter, a
- empirical parameter, b
- characteristic slip distance, D,
- reference velocity, v,
- friction at v,

aln (v/vy)

(w)

V'S

Coefficient of Friction

Velocity Weakening

>

Displacement



Previous models

Potential for catastrophic failure?

Critical nucleation size
(Dieterich, 1979)

G = shear modulus _
T o’ = effective stress
d. = characteristic slip

distance L = size of slip

__ surface
a, b = friction
parameter
Slow sliding Catastrophic failure
L <h* L>h"

* Hypothesis: slow-moving landslides rarely fail
catastrophically because landslide size is smaller than
required for catastrophic failure



Previous models

a. Model Geometry
hilltop

=== \elocity-weakening

—h*

Slow-moving landslide, L < h*



Previous models

a. Model Geometry
hilltop

=== \elocity-weakening

—h*

Catastrophic failure, L > h*



Previous models

Potential for catastrophic failure?

Slow sliding Catastrophic failure
L <h* L>h*

Cleveland Corral 10" dynamic slip speeds
1.01 landslide, CA
@ 1997 @ 2004

J ®1998 @ 2005
0.5 © 2002 © 2010

lower

= Rate-weakening
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* The ratio of L/h* determines if the landslide will move downslope slowly or
runaway

Handwerger et al. 2017



Previous models

Transition from slow to catastrophic failure

Critical nucleation size
(Dieterich, 1979)

G = shear modulus

- o' = effective stress
d. = characteristic slip

distance L = size of slip

__ surface
a, b = friction

parameter

How to transition fromL <h*to L > h*?

* Landslides slip surface grows with time
* Slip surface localization will cause reductionin d.

* Decrease in effective stress caused by an increase in pore pressure
makes slip surface more stable!!!!



Potential Mechanisms

Transition from slow to catastrophic failure

b) 095 | Injection 1 MPa/h Scuderi et al. 2017/ | l 16.5 ©
' —— Constant Pf 1160 =
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* Large pore pressure increase can trigger dynamic slip
instability by overcoming effects of rate- and state- friction

* Dynamic instability can occur even along a rate-
strengthening slip surface



Potential Mechanisms

Transition from slow to catastrophic failure

Scuderi et al. 2017

c) Energy dissipation by dilation R Dynamic Slip
/ | slip velocity increase Compaction

On I ¢ f

-----------

T=const. stage (2)

* Large pore pressure increase can trigger dynamic slip
instability by overcoming effects of rate- and state- friction

* Dynamic instability can occur even along a rate-
strengthening slip surface



Potential Mechanisms

Transition from slow to catastrophic failure

As for Mud Creek...

* Record rainfall during WY 2017.

* Most likely explanation is that a large pore pressure
increase overcame rate-strengthening or stabilizing
properties
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Transition from slow to catastrophic failure
Mud Creek 1D diffusion model

Potential Mechanisms

——data

—— model

VAN

2007 2008

P = Pore pressure
D, = characteristic
diffusivity

* Largest pore pressures in over a decade reached during
WY 2017
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Potential Mechanisms

Transition from slow to catastrophic failure
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Concluding Remarks

* Asingle landslide can display slow-motion with seasonal
velocity changes for years prior to catastrophic failure

* Divergence from “typical” velocity pattern may provide
warning that there is a change in kinematics

* Catastrophic failure likely due to a large increase in pore
pressure

* Pore pressure increase can overcome mechanisms that
act to stabilize sliding



Data MBARI, ¢



Creep-to-failure landslides

* Many landslides display accelerated motion weeks to years prior to
their collapse
* Potential to predict time to failure
* Inverse velocity method, 1/v—o
* 1963 Vajont landslide, Italy
* killed 2500 people
* 70 days of accelerating motion
* possible to predict 2 months in advance
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03 -
200 -

=
w1
o

100 A

Velocity {mm/day)

w
=)
1

Inverse velocity {day/mm)

N bV AV 4 N h V.4 NE

' T T T T T
0 10 20 30 40 50 60 70
Time (days)

Muller 1965; Carla et al. 2016



Creep-to-failure landslides

Betze-Post open pit, USA Boulder Creek landslide, USA
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* Velocity-strengthening
* Viscous resistance « velocity

* Can describe _'ow-motion but not catastror.iic failure



