
69th International Astronautical Congress, Bremen, Germany. Copyright c© 2018 by the authors. All rights reserved.

IAC–18–C1.1.8

Low-Thrust Trajectory Design Via Direct Transcription Leveraging
Structures from the Low-Thrust Restricted Problem

Robert Pritchett
Purdue University, USA, pritcher@purdue.edu

Andrew D. Cox
Purdue University, USA, cox50@purdue.edu

Kathleen C. Howell
Purdue University, USA, howell@purdue.edu

David C. Folta
NASA Goddard Space Flight Center, USA, david.c.folta@nasa.gov

Daniel Grebow
Jet Propulsion Laboratory - California Institute of Technology, USA, daniel.grebow@jpl.nasa.gov

A primary challenge of low-thrust mission design is the development of an initial guess for the state and
control history of a trajectory. To address this challenge, one technique assembles dynamical structures,
such as periodic orbits and their associated manifolds, into discontinuous chains that are corrected to locally
optimal transfer solutions via direct transcription. In this investigation, dynamical structures that leverage
low-thrust in a multi-body regime are incorporated into the orbit chain approach to expand the options
available for construction of an initial guess and to guide the direct transcription algorithm toward different
categories of locally optimal solutions. The properties and structures of the low-thrust model which facilitate
orbit chain construction are demonstrated in representative transfer scenarios. Direct transcription is applied
to converge upon locally optimal transfer trajectories in both simplified and ephemeris models. Results
indicate that low-thrust dynamical structures offer a promising new catalog of options for use in the orbit
chain approach to designing optimal low-thrust trajectories.

I. Introduction

The efficiency of low-thrust propulsion has enabled
a variety of ambitious missions in recent decades1,2

and spurred the proposal of many new ones that
will leverage this technology to explore the solar sys-
tem.3–5 The growing use of low-thrust propulsion ne-
cessitates that methods to design and navigate low-
thrust trajectories be improved. One of the primary
challenges of low-thrust mission design is the develop-
ment of an appropriate initial guess for the combined
state and control history of a trajectory. While many
strategies exist to leverage dynamical structures in
two- and three-body models for ballistic trajectory
design, fewer methods are available to supply an ini-
tial control history. This investigation seeks to lever-
age structures from a combined low-thrust, multi-
body model to facilitate such preliminary planning.
By including these structures in a direct transcription
scheme, low-thrust transfers between various regions
of the three-body system are designed and validated.

One technique for addressing the challenge of low-
thrust trajectory design assembles dynamical struc-
tures, such as periodic orbits and their associated
manifolds, into discontinuous chains that are cor-
rected to locally optimal transfer solutions via di-
rect transcription.6,7 Typically, the links employed
in this orbit chain approach are ballistic trajectories,
and thrust arcs are added during the corrections pro-
cess to facilitate convergence and remove discontinu-
ities between links. However, employing only natu-
ral arcs in an initial guess may obscure families of
mass or time optimal trajectories that possess differ-
ent geometries and control histories. One strategy
that may mitigate this possibility is the incorpora-
tion of dynamical structures that leverage low-thrust
into the orbit chain approach. These additional struc-
tures expand the options available for the construc-
tion of an initial guess and guide the direct transcrip-
tion algorithm toward alternative sets of locally op-
timal solutions. In this work, a low-thrust (LT) force
is added to the equations that define the circular re-
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stricted three-body problem (CR3BP) to construct
a combined model, the CR3BP-LT. Techniques from
dynamical systems theory are applied to gain insight
into the combined dynamics and to generate a variety
of useful structures. Representative transfer scenar-
ios demonstrate how these structures facilitate orbit
chain construction by supplying new geometries and
reducing state discontinuities between links. Further-
more, insights from the CR3BP-LT model inform the
selection of arcs included in an orbit chain and guide
the formulation of the initial control history. Follow-
ing orbit chain assembly, direct transcription is ap-
plied to converge upon locally optimal transfer tra-
jectories in the CR3BP. Finally, the optimal paths
are transitioned to a high-fidelity model for valida-
tion. Results indicate that an orbit chain containing
low-thrust dynamical structures is equally as capable
of delivering an optimal low-thrust trajectory as one
that contains only ballistic structures. Moreover, a
method employing low-thrust dynamical structures is
adaptable, because these structures can be generated
for a wide variety of system and spacecraft models as
well as many different transfer scenarios. The appli-
cation of low-thrust structures is particularly useful
for transfer design between stable or nearly stable or-
bits that do not possess natural manifolds to facilitate
flow to and from the orbits. Overall, low-thrust dy-
namical structures offer a promising new catalog of
options for use in the orbit chain approach to design-
ing optimal low-thrust trajectories.

II. Background

Multiple authors have explored techniques for low-
thrust trajectory design similar to the chaining ap-
proach leveraged in this investigation.6,7 For exam-
ple, Howell, Barden, and Lo apply this strategy in the
context of the CR3BP to link invariant manifolds be-
tween periodic orbits for what became the GENESIS
mission.8 This application of dynamical systems the-
ory to trajectory design has been further developed
by a variety of researchers who utilize invariant man-
ifolds to form dynamical chains that reveal natural
flow in a wide range of three-body systems, and facil-
itate transfer design.9–13 Parker and others similarly
employ a chaining approach to link periodic orbits
and their manifolds to form complex new periodic
orbits.14,15 Recently, Restrepo and Russell have pre-
sented a method of “Patched Periodic Orbits” that
leverages an extensive database of periodic orbits16

to quickly design low-energy transfers throughout the
CR3BP by patching together successive periodic or-
bits.17 While the work of these authors includes many

different applications, each employs a chaining strat-
egy to link dynamical structures, as this is a straight-
forward and practical approach to trajectory design.
The present investigation builds upon these devel-
opments and seeks to further alleviate the challenge
of low-thrust trajectory design in the CR3BP by as-
sembling chains of ballistic and low-thrust dynamical
structures.

Although many strategies exist to assemble and
adjust chains of dynamical structures, collocation of-
fers several distinct advantages. Collocation is an
implicit numerical integration method that approx-
imates the solution to a set of ordinary differen-
tial equations using polynomials. This approach is
particularly robust compared to other methods, be-
cause collocation algorithms are often able to con-
verge upon a solution given a poor initial guess even
when other techniques fail. When paired with an
optimization algorithm, the resulting scheme is de-
noted direct transcription.18 In this scheme, collo-
cation is employed to discretize a continuous opti-
mal control problem into a nonlinear programming
problem (NLP) that is then solved via a direct op-
timization approach. Grebow and Pavlak19 offer
an overview of the history of collocation and direct
transcription methods, and these techniques are dis-
cussed more generally within several excellent survey
papers on the topic of trajectory optimization.20–22

Many possible implementations of a direct transcrip-
tion scheme are available; this investigation generally
follows the collocation and mesh refinement frame-
work defined by Grebow and Pavlak19, and is consis-
tent with previous work.6,7 Direct transcription has
been leveraged previously to explore solutions to low-
thrust trajectory design problems in the Earth-Moon
CR3BP.23–26 This earlier work demonstrates that di-
rect transcription successfully delivers a solution for a
wide range of initial guess and path constraint scenar-
ios. Overall, the robustness and adaptability of direct
transcription offers a powerful strategy for computing
low-thrust solutions.

Although direct transcription possesses a wide
basin of convergence, the generation of initial guesses
for low-thrust paths through multi-body regimes re-
mains challenging and can negatively influence the
results obtained from collocation. While there are
many strategies for designing thrust vector histories
in the two-body problem27,28, fewer methods incor-
porate multi-body dynamics. Studies of solar sail
dynamics in the Earth-Sun and Earth-Moon three-
body systems supply some guidance on the selection
of sail parameters to achieve stable orbits around arti-
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ficial equilibria29, or paths between sequences of ar-
tificial equilibria.30 Subsequent studies of the com-
bined CR3BP-solar sail dynamics reveal a rich vari-
ety of dynamical structures, including invariant man-
ifolds, periodic orbits, and quasi-periodic orbits.31,32

Similar structures exist in a more general low-thrust,
multi-body model, the CR3BP-LT, and are leveraged
to identify initial guesses for the low-thrust control
history.33,34 Dynamical structures and insights from
the low-thrust CR3BP (CR3BP-LT) are employed in
this investigation to construct initial designs that in-
corporate low-thrust.

III. Dynamical Model Development

The first step in computing and leveraging dynam-
ical structures for inclusion in a low-thrust trajectory
design is the development of the dynamical model.
An energy-based approach is first employed to de-
rive the governing equations in the CR3BP and ob-
tain an expression for the natural Hamiltonian. By
augmenting the CR3BP equations of motion (EOMs)
with a low-thrust term, the CR3BP-LT is constructed
and the associated low-thrust Hamiltonian is defined.
This low-thrust Hamiltonian serves as an integral of
motion when the low-thrust acceleration vector is
fixed in the rotating frame, and, thus, may be lever-
aged to characterize motion in the CR3BP-LT. Fi-
nally, transfers constructed within the CR3BP are
transitioned to an N -body ephemeris model for vali-
dation.

III.i Circular Restricted Three-Body Problem

The CR3BP describes the motion of a relatively
small body, such as a spacecraft, in the presence of
two larger gravitational point masses (P1 and P2)
with paths that evolve along circular orbits about
their mutual barycenter (B). To simplify the gov-
erning equations and enable straightforward visual-
ization of periodic solutions, the motion of the space-
craft is described in a right-handed frame (x̂, ŷ, ẑ)
that rotates with the two primaries, as seen in Figure
1, where x̂, ŷ, and ẑ are vectors of unit length (de-
noted by the caret above the symbol). The system is
parameterized by the mass ratio, µ = M2/(M1+M2),
where M1 and M2 are the masses of the primaries and
M1 ≥ M2. To facilitate numerical integration, the
dimensional values are nondimensionalized by char-
acteristic quantities such that the distance between
P1 and P2 is unity, the mean motion of the two pri-
maries is unity, and the masses of each body range
from zero to one.35

The equations of motion governing the CR3BP are

~̂X

~̂Y

~̂x

θ

P2

P1

~̂y

Spacecraft (x, y, z)

~r23
~r13

B

Fig. 1: CR3BP system configuration; two point
masses, P1 and P2, proceed on circular orbits
about their mutual barycenter, B. The behavior
of a third, relatively massless particle is described
via the rotating coordinate frame, (x̂, ŷ, ẑ)

derived via a Hamiltonian energy approach. Let the
kinetic (T ) and potential (V ) energies corresponding
to the CR3BP system be defined by

T =
1

2

[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
, [1]

V =
−(1− µ)

r13
− µ

r23
, [2]

where ẋ, ẏ, and ż are the derivatives of the posi-
tion states with respect to nondimensional time as
observed in the rotating frame, and r13 and r23 are
the distances between the spacecraft (P3) and the
first and second primaries, respectively:

r13 =
√

(x+ µ)2 + y2 + z2 ,

r23 =
√

(x− 1 + µ)2 + y2 + z2 .

Next, form the Hamiltonian,

Hnat =
1

2
v2 − 1

2

(
x2 + y2

)
− 1− µ

r13
− µ

r23
, [3]

where v2 = ẋ2+ẏ2+ż2 is the spacecraft velocity mag-
nitude in the rotating frame. By applying Hamilton’s
canonical equations of motion, a set of differential
equations that govern the motion of P3 emerges,

ẍ = 2ẏ + Ωx, [4]

ÿ = −2ẋ+ Ωy, [5]

z̈ = Ωz, [6]

where Ω is the CR3BP pseudo-potential function,

Ω =
1

2
(x2 + y2) +

1− µ
r13

+
µ

r23
, [7]
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and Ωx, Ωy, and Ωz represent the partial derivatives
of Ω with respect to the subscripted variables x, y,
and z. Because the CR3BP is autonomous and con-
servative, Hnat is constant and proportional to the
Jacobi integral, i.e., the Jacobi constant. The Jacobi
constant, C = −2Hnat, is commonly used as a mea-
sure of the energy associated with arcs in the CR3BP.

III.ii CR3BP Incorporating Low-Thrust

To incorporate low-thrust into the CR3BP multi-
body model, the low-thrust acceleration vector is first
defined. This vector,

~alt =
f

m
û , [8]

is oriented relative to the rotating frame via the unit
vector û and scaled by the nondimensional thrust
magnitude, f , and nondimensional spacecraft mass,
m = M3/M3,0, where M3 is the instantaneous space-
craft mass and M3,0 is the initial (wet) spacecraft
mass. A nondimensional thrust magnitude of f ≈
10−2 in the Earth-Moon and Sun-Earth CR3BP-LT
systems is consistent with current spacecraft capabil-
ities, such as Deep Space 1, Dawn, or Hayabusa.33,34

Accordingly, a low-thrust acceleration magnitude of
alt = f/m = 7e-2 is frequently employed in this doc-
ument to represent a reasonable low-thrust capability
of about 0.19mm/s2 in the Earth-Moon system.

To apply an energy-based derivation of the
CR3BP-LT EOMs similar to the derivation lever-
aged for the CR3BP, the CR3BP dynamics are aug-
mented with a low-thrust acceleration term. While
the spacecraft kinetic energy expression in Equation
[1] remains unchanged, the potential energy expres-
sion incorporates a low-thrust acceleration term, i.e.,

Vlt =
−(1− µ)

r13
− µ

r23
− ~r • ~alt , [9]

where ~r = {x y z}T . This additional term propa-
gates through the derivation to yield the low-thrust
Hamiltonian,

Hlt =
1

2
v2− 1

2

(
x2 + y2

)
− 1− µ

r13
− µ

r23
−~r •~alt , [10]

which may also be written in terms of the natural
Hamiltonian, i.e.,

Hlt = Hnat − ~r • ~alt . [11]

Due to the time-varying nature of the spacecraft
mass, the governing equations are not available di-

rectly from Hamilton’s canonical equations. How-
ever, Newton’s law is applied to yield the EOMs,

ẍ = 2ẏ + Ωx + altux, [12]

ÿ = −2ẋ+ Ωy + altuy, [13]

z̈ = Ωz + altuz, [14]

ṁ =
−fl∗
Ispg0t∗

, [15]

where alt is the low-thrust acceleration vector magni-
tude, ux is the x̂-component of û, etc., Isp is the spe-
cific impulse associated with the propulsion system,
and g0 = 9.80665× 10−3 km/s2. These equations are
consistent with those that govern the natural CR3BP
and are augmented with the low-thrust acceleration
terms.

To facilitate analyses in the CR3BP-LT, simpli-
fications are applied to reduce the number of di-
mensions. The natural problem, which is conserva-
tive, admits an integral of the motion (the Hamilto-
nian, Hnat), reducing the natural problem dimension
by one. Due to the non-autonomous nature of the
CR3BP-LT, the low-thrust Hamiltonian is not con-
stant in general and, thus, does not offer a similar
dimension reduction. However, when the magnitude
and orientation of the low-thrust acceleration vector
are fixed in the rotating frame, Hlt is constant, yield-
ing a conservative, Hamiltonian system. A constant
~alt vector is a reasonable assumption in CR3BP-LT
systems with sufficiently small l∗/t∗ ratios and suffi-
ciently large µ values, such as the Earth-Moon sys-
tem employed in this investigation.34 Accordingly,
the variable acceleration quantity f/m is replaced
by the constant value alt, removing the need for the
mass time-derivative in Equation [15]. These simpli-
fications – a constant low-thrust Hamiltonian and a
constant acceleration magnitude – effectively reduce
the problem dimension by two.

By leveraging the constant low-thrust acceleration
vector simplification, additional insights are avail-
able to guide low-thrust trajectory design. While the
natural Hamiltonian is not generally constant in the
CR3BP-LT, Hnat evolves independently of the space-
craft path when ~alt is fixed in the rotating frame.34

Finally, to further reduce the system complexity, only
planar motion is considered.That is, z(τ) = ż(τ) = 0
for all τ , and the planar low-thrust pointing vector,
û, is described by the vector

û =
{

cosα sinα 0
}T

. [16]

These simplifications facilitate the study of dynami-
cal structures in the CR3BP-LT while also supplying
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insights that are useful for spatial (3D) trajectory de-
sign.

III.iii N -Body Ephemeris Model

Transfers constructed in a simplified three-body
dynamical model must be validated in an N -body
ephemeris based model before they can be applied to
realistic spaceflight scenarios. The establishment of
an ephemeris model begins with the definition of an
inertial reference frame. By convention, the origin
of this frame is located at the center of one of the
gravitational bodies included in the model with mass
denoted mq. The motion of the particle of interest,
with mass mi, is influenced by the central body and
expressed within this inertial reference frame. Other
gravitational bodies, mj , included in the ephemeris
model exert additional perturbing influences on the
particle of interest. All bodies are assumed to be cen-
trobaric point masses, thus, the equations of motion
for the particle of interest are,

~̈pqi = −Gmi +mq

p3qi
~pqi+G

∑
j=1
j 6=i,q

mj

(
~pij
p3ij
− ~pqj
p3qj

)
[17]

where G is the universal gravitational constant, ~pqi
is the position vector from the central body to the
particle of interest, and pqi is the norm of this vec-
tor. Likewise, ~pij and ~pqj are position vectors to
the perturbing bodies from the particle of interest
and the central body, respectively. In this investi-
gation the Earth or Moon are employed as the cen-
tral body, while the Sun and Jupiter are included
as additional perturbing bodies. The locations of
these bodies are obtained from the Jet Propulsion
Laboratory’s Navigation and Ancillary Information
Facility (NAIF) SPICE ephemeris data, specifically
the DE421 ephemerides.36 The particle of interest
in this application is assumed to be a low-thrust
spacecraft with an infinitesimally small mass com-
pared to the masses of the other bodies. Finally, the
states of all bodies are expressed in the J2000 iner-
tial frame and the initial epoch is noon UTC on Jan-
uary 1st, 2000. Together, these parameters define the
ephemeris model employed to validate trajectories.

IV. Dynamical Structures

Initial low-thrust trajectory designs may exploit a
variety of dynamical structures, including both bal-
listic CR3BP arcs and thrust-enabled motion from
the CR3BP-LT. A preliminary understanding of the
structures available in any model is available from an

analysis of the local linear dynamics near the equilib-
rium solutions. From this basic analysis, numerical
algorithms globalize the local dynamics to yield fami-
lies of structures, such as periodic and quasi-periodic
orbits, that may be employed as destination orbits
or as intermediate paths. Finally, dynamical systems
techniques are applied to periodic orbits to construct
manifolds that offer low-cost transfers into and out of
the originating structure. As manifolds exist for both
ballistic and low-thrust periodic solutions, they are a
valuable component of orbit chains for low-thrust tra-
jectory design.

IV.i Equilibrium Solutions

The planar dynamics in the CR3BP yield equilib-
rium solutions that supply an initial characterization
of the local and global dynamics that may be utilized
for path planning. Linearizations of the nonlinear
dynamics relative to the equilibria describe local sta-
ble, unstable, and center manifolds. Global invariant
manifolds are constructed by transitioning the lin-
ear results to the nonlinear model, where they are
leveraged for trajectory design.35 The CR3BP ad-
mits five equilibrium solutions, the well known La-
grange points. Three collinear points, i.e., L1, L2,
and L3, are located on the x-axis and are character-
ized by a saddle and a center subspace. Accordingly,
stable and unstable manifolds supply transit motion
to and from these equilibria (the saddle mode), and
oscillatory solutions exist near the fixed point (the
center mode). The triangular points, i.e., L4 and
L5, do not possess a saddle mode and are charac-
terized by a four-dimensional center subspace in the
Earth-Moon CR3BP. Subsequently, no manifolds de-
scribe flow to or from these fixed points. Periodic
and quasi-periodic structures are initialized from lin-
ear approximations supplied by the center subspace
associated with each equilibrium point, yielding fam-
ilies of structures such as the well-known planar Lya-
punov orbits near L1, L2, and L3 and the short period
orbits (SPOs) near L4 and L5.

Similar to the CR3BP, the planar CR3BP-LT ad-
mits equilibrium solutions that supply useful flow
characterizations. However, the locations, local lin-
ear dynamics, and number of equilibrium points vary
with the thrust magnitude and orientation.34 Subse-
quently, manipulations of the low-thrust acceleration
vector directly influence the existence and character-
istics of nearby dynamical structures. When alt is
small, the CR3BP-LT equilibria are located near the
natural equilibrium points and are characterized by
similar linear modes. However, as alt increases, the
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low-thrust equilibria move further from the natural
fixed points and the associated stability characteris-
tics change, both qualitatively (e.g., saddle, center)
and quantitatively (e.g., time constant, frequency).
These variations between the natural and low-thrust
equilibrium solutions supply novel flow patterns that
are employed to inform initial guesses for low-thrust
transfers.

IV.ii Periodic Solutions

Periodic solutions in the CR3BP are important
components of many trajectory design applications
as they supply bounded, repeated motion in space
while accounting for third-body effects, a level of fi-
delity not available in the conic model. Additionally,
periodic motion from the CR3BP is transitioned to
ephemeris models via corrections algorithms.37 Many
families of periodic solutions originate from the equi-
librium solutions; very near the fixed point, the non-
linear periodic motion is well approximated by the
local linear dynamics of the center subspace. Con-
tinuation methods are then employed to compute ad-
ditional solutions that are affected more strongly by
the nonlinearities of the global dynamics. These fam-
ilies of dynamical structures are parameterized by
a single quantity, such as the Jacobi constant (or,
equivalently, Hnat), orbit period, or a nonphysical
parameter. Accordingly, structures are selected from
a family based on the set of characteristics required
for a mission application.

Periodic solutions are also available in the CR3BP-
LT, with many families of these structures also origi-
nating near the low-thrust equilibrium solutions that
possess a center subspace. As the equilibria locations
and stability properties vary from the natural CR3BP
conditions as a function of the low-thrust magnitude,
alt, and orientation, α, families of solutions are avail-
able in the CR3BP-LT that do not exist in the natu-
ral problem, such as those plotted in Figure 2. Sim-
ilar to families of orbits in the CR3BP, low-thrust
periodic orbit families are parameterized by a single
value such as Hlt, orbit period, α, or alt. For ex-
ample, the family of orbits in Figure 2 evolves with
α; each family member is characterized by the same
Hlt = −1.453 value. Each orbit within this family
is also a member of a family that evolves through a
range of Hlt values with a fixed α value. Thus, given
the increased dimension of the CR3BP-LT, families
may be continued along a greater number of dimen-
sions, yielding a larger set of solutions for use in an
initial trajectory design. Furthermore, as α and alt
are both available as continuation parameters, links

-1.5 -1 -0.5 0 0.5 1

x, nondim

-1

-0.5

0

0.5

1

y
, 
n

o
n

d
im

Earth Moon

Fig. 2: Family of periodic orbits in the Earth-Moon
CR3BP-LT for alt = 7e-2 and Hlt = −1.453; each
family member corresponds to a different α value;
some members are colored to emphasize the orbit
geometry

between the spacecraft thrust history and trajectory
geometry are available from these solutions.

IV.iii Manifolds

Invariant manifolds associated with periodic orbits
describe flow through the CR3BP.38 Similar to the
equilibrium solutions, linear dynamics derived from
the stroboscopic representation of a periodic orbit
may be characterized as saddle modes with stable and
unstable manifolds, or as center modes that indicate
additional oscillatory motion, i.e., quasi-periodic so-
lutions. As the stable and unstable manifolds asymp-
totically approach the periodic solution in reverse
and forward time, respectively, they are frequently
exploited as pathways between periodic structures,
including for missions like GENESIS.39 The mani-
folds associated with a periodic orbit, by necessity,
are characterized by the same properties as the orig-
inating structure. That is, manifolds of a CR3BP
orbit possess the same Hnat value as the orbit, and
manifolds of a CR3BP-LT orbit are characterized by
the same Hlt, α, and alt values as the low-thrust peri-
odic structure. Accordingly, the manifolds associated
with low-thrust periodic orbits (LTPOs) supply ad-
ditional links between geometric paths through space
and specific sets of control parameters (α and alt), fa-
cilitating the construction of an initial transfer design
with a priori knowledge of the thrust profile.
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Fig. 3: Stable (blue) and unstable (orange) mani-
folds associated with a low-thrust periodic or-
bit (LTPO) in the Earth-Moon CR3BP-LT for
alt = 7e-2, α = 60◦, and Hlt = −1.562. Forbid-
den regions corresponding to this Hlt value (gray
regions) bound the low-thrust motion; low-thrust
equilibria are plotted as black diamonds

V. Results

Dynamical structures from the CR3BP and
CR3BP-LT are combined in chains to design transfers
for two different applications. In each application,
a chain of only natural structures and a chain with
structures from both models are utilized as initial de-
signs for the direct transcription algorithm. The ob-
jective function for this algorithm is maximum final
mass, and the total change in mass along a trajec-
tory, ∆m, is one of the parameters used to compare
results. Other characteristics such as geometry and
thrust profile are also employed to draw comparisons
and explore the effects of the low-thrust structures on
the optimal trajectory delivered by direct transcrip-
tion. These comparisons reveal that low-thrust struc-
tures effect the final, optimal path in similar ways as
natural dynamical structures. Thus, when the ge-
ometries of two orbit chains are similar (regardless of
which model the component structures are obtained
from), comparable optimal solutions are computed,
as demonstrated in the first application. Within this
investigation, solutions with broadly similar charac-
teristics are described as falling in the same optimal
“basins”. This application of the term basin is looser
than the mathematical definition of the word; how-
ever, in this context, it is a useful term for grouping
the types of optimal solutions that result from a vari-
ety of initial trajectory designs. In the second appli-

cation, two initial designs with significantly different
geometries yield significantly different optimal solu-
tions, that is, two solutions that appear to fall within
different optimal basins. A valuable implication of
this framework is that when the available basins of
solutions for a type of transfer are understood, then
it is possible to construct an initial design that gen-
erates a solution with the features of a specific basin.
The versatility of this methodology is extended when
low-thrust structures are included in an initial guess,
because these structures offer novel geometries for
some applications. Thus, the optimal solution can be
intentionally biased by selecting low-thrust arcs with
desirable properties, as demonstrated in the second
application.

V.i Application 1: L4 SPO to L3 Lyapunov Transfer

Families of low-thrust periodic orbits offer new ge-
ometries and energy profiles that may be employed
to aid the process of low-thrust trajectory design.
Moreover, in contrast to natural dynamical struc-
tures, low-thrust dynamical structures include pre-
scribed control histories, and these may offer an im-
proved initial guess for the control profile necessary
to achieve a feasible trajectory. In this sample ap-
plication, members of a family of low-thrust periodic
orbits are utilized in an orbit chain technique to com-
pose an initial guess for a low-thrust transfer from an
L4 short period orbit (SPO) to an L3 Lyapunov or-
bit, both characterized by the natural Hamiltonian
value Hnat = −1.453. To offer a comparison, the
same transfer is developed using an orbit chain con-
sisting of only natural dynamical structures from the
CR3BP as an initial guess. Contrasting the results
of the two different initial guesses indicates how us-
ing low-thrust dynamical structures in the transfer
design process affects the final trajectory.

An orbit chain consisting of only natural dynam-
ical structures from the CR3BP is assembled as an
initial guess for the transfer between the aforemen-
tioned L4 SPO and L3 Lyapunov orbits. The trans-
fer computed from this initial guess offers a baseline
to assess the influence of low-thrust dynamical struc-
tures in an initial guess on the converged feasible and
optimal solutions. In addition to the initial and fi-
nal orbits, several other members of the L4 SPO and
L3 Lyapunov orbit families are included as interme-
diate links in the orbit chain, as seen in Figure 4(a).
These additional links are added to reduce the discon-
tinuities in position and velocity between subsequent
members of the orbit chain. The inclusion of these
supplementary links necessitates a change in energy,

IAC–18–C1.1.8 Page 7 of 16



69th International Astronautical Congress, Bremen, Germany. Copyright c© 2018 by the authors. All rights reserved.

demonstrated in Figure 4(b) with a plot of Hlt as a
function of orbital period for the L4 SPO and L3 Lya-
punov families. Note that the low-thrust Hamiltonian
is equivalent to the natural Hamiltonian, H, for nat-
ural arcs as the low-thrust acceleration magnitude,
alt, is zero, negating the extra terms in Equation [10];
Hlt is used for consistency when both low-thrust and
natural arcs are included in the chain. Figure 4(b) il-
lustrates that the additional members of the L4 SPO
family increase the value of Hlt with increasing dis-
tance from the originating SPO, while the extra L3

Lyapunov orbits decrease this value again with de-
creasing distance to the destination Lyapunov. Fur-
thermore, the third and fourth orbit chain links are
selected to possess the same Hlt value, to reduce the
energy change required to transition between peri-
odic orbit families. More intermediate links, includ-
ing additional orbits from either the L4 SPO or L3

Lyapunov orbit families, could be added to further
reduce discontinuities; however, the inclusion of ad-
ditional orbits yields an increased time of flight and
a larger number of design variables in the optimiza-
tion problem. Rather, it is advantageous to include
alternative dynamical structures that offer paths that
span the region of interest and reduce the discontinu-
ities observed within the initial guess.

As an alternative to a chain of purely ballistic arcs,
an orbit chain that leverages a unique family of L4

LTPOs is assembled to assess whether this novel ap-
proach can supply an initial guess with reduced state
discontinuities and lead to a more optimal solution.
The family of L4 LTPOs utilized in this transfer is de-
fined by Hlt = −1.453 and is displayed in Figure ??.
This family of LTPOs is selected because its members
neatly span the space between the natural departure
and destination orbits. Therefore, four orbits from
this family are employed in an orbit chain that also
includes the natural initial and final orbits. Figure
5(a) illustrates how the consecutive links of this or-
bit chain overlap at multiple points in position space,
and that the intermediate links gradually transition
the direction of velocity from the departure to the
destination orbits. Not only do these LTPOs offer re-
duced position and velocity discontinuities between
orbit chain links, but they also maintain a value of
Hlt consistent with the initial and final orbits, as seen
in Figure 5(b). As the Hlt value of each low-thrust
periodic orbit is consistent with the initial and fi-
nal natural orbits, the size of and velocity along each
of the links are similar. These similarities facilitate
convergence and offer an alternative geometry com-
pared to the stack of natural orbits in Figure 4(a). A

(a) Selected members of the L4 SPO and L3 Lyapunov orbit
families including the initial and final orbits (bolded).
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(b) Plot of Hlt as a function of orbital period for the orbit
families used to construct initial guess.

Fig. 4: Natural periodic orbits are employed to com-
pose an initial guess for a transfer from an L4 SPO
to an L3 Lyapunov orbit. Geometry and energy
characteristics are examined to select the compo-
nents of the initial guess.

chain constructed from arcs with similar energy val-
ues may yield a transfer with lower propellant costs,
but other variables (orbit orientation, velocity direc-
tion) strongly influence convergence and the resulting
optimal solution.

Finally, the two different orbit chains are used as
initial guesses for the direct transcription algorithm
and the results are compared to assess the effect of
the various orbit chain links on the characteristics
of the resulting solution. Despite the significant dif-
ferences between the initial guesses displayed in Fig-
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(a) Selected members of a low-thrust L4 SPO family at
Hlt = −1.453 along with the departure L4 SPO and arrival
L3 Lyapunov (bolded).
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(b) Plot of Hlt as a function of orbital period for the orbit
families employed to construct initial guess.

Fig. 5: Low-thrust periodic orbits are employed to
compose an initial guess for a transfer from an
L4 SPO to an L3 Lyapunov orbit. Geometry and
energy characteristics are examined to select the
components of the initial guess.

ures 4 and 5, the mass optimal transfers computed
from each guess are quite similar, as seen in Figure
6. Both transfers exhibit nearly identical geometries
with thrust segments in very similar locations. Both
utilize brief thrust segments for departure and inser-
tion as well as two longer thrust segments during in-
termediate arcs. The small differences between the
two solutions become more clear when their energy
profiles, plotted in Figure 7, are examined. These
profiles display Hlt as a function of time of flight for
both transfers. While these profiles are very similar,

it is evident that the transfer generated with the or-
bit chain composed of only natural dynamical struc-
tures deviates more frequently and farther from the
Hlt value of the initial and final orbits. Prior to the
first long duration burn, the energy profile in Figure
7(a) deviates from the initial value of Hlt more sig-
nificantly than the profile in Figure 7(b) which cor-
responds to the solution initialized with low-thrust
structures. Furthermore, the coast arc bounded by
the two long duration burns maintains a lower energy
level for the transfer computed using only natural or-
bits; this difference corresponds to the slight variation
in geometry for this arc between the two solutions
(shown in Figure 6). A transfer with minimal energy
changes corresponds to the theoretical minimum-cost
path, and this is likely the reason that the transfer
generated using LTPOs requires a smaller ∆m. The
change in mass associated with both transfers com-
puted in the CR3BP is summarized along with time
of flight (TOF) and ∆V in Table 1. The reported ∆V
values are computed with the classical rocket equa-
tion. This expression offers an approximation of the
equivalent ∆V required for the low-thrust transfer.

The transfer generated with the aid of low-thrust
dynamical structures consumes over 2 kilograms less
propellant, which translates to a ∆V savings of ap-
proximately 65 m/s. It is possible that the nearly
constant energy profile of the initial guess that in-
cludes low-thrust dynamical structures may have
guided the optimizer to a slightly more optimal solu-
tion. However, this sample application alone is not
sufficient to state that these structures generally lead
to superior mass optimal solutions. The similarities
between the two solutions – despite the significantly
different initial guesses – highlights the robustness
of the direct transcription algorithm. Moreover, this
result is consistent with previous work that demon-
strates both the existence of multiple “basins” of op-
timal solutions and how the components of an orbit
chain guide the optimal solution into one of these
basins7. In this application, the orbit chains are sim-
ilar enough that they lead to similar local optimal
basins. However, if a resonant orbit that first passes
near the Moon before returning to the vicinity of L3

is included in the orbit chain instead, the resulting
solution will follow a similar trajectory. Thus, the re-
sults of this application, understood in the context
of optimal basins, reveal that although dynamical
structures from the CR3BP-LT offer novel geome-
tries, these structures may still lead to a similar set
of basins. Hence, the initial guesses with and with-
out LTPOs in this case result in comparable optimal
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Init. Guess TOF [days] ∆m [kg] ∆V [m/s]

Nat. Only 165.716 5.825 171.887
With LT 158.847 3.572 105.289

Table 1: Summary of key parameters for the low-
thrust transfers computed in the Earth-Moon
CR3BP for Application 1.

paths. However, the framework of optimal basins
also underscores a potential advantage of utilizing
low-thrust dynamical structures: Due to their unique
characteristics (e.g., geometry, location, energy), in-
cluding these structures in an orbit chain may guide
the solution towards a different basin that cannot be
easily accessed with an initial guess composed of nat-
ural structures alone. Indeed, such a result is pre-
sented in the following section.

Finally, to validate that these transfers and the
methods employed to compute them are available for
practical applications, both low-thrust transfers are
transitioned to an N -body ephemeris model that in-
cludes the Earth, Moon, Sun, and Jupiter. The re-
sulting transfers are displayed in Figure 8. Clearly,
both transfers retain a similar geometry to what was
observed in the CR3BP results. This result indicates
that similar trajectories are available in an ephemeris
model and may be leveraged in realistic mission sce-
narios.

V.ii Application 2: L4 SPO to L1 Lyapunov Transfer

Low-thrust structures offer unique paths that may
differ significantly from the natural dynamics. For ex-
ample, unstable LTPOs exist in the vicinity of stable
natural periodic orbits. Accordingly, transfers to the
natural periodic orbit can be facilitated by the LTPO
stable and unstable manifolds that flow into and out
of the region. To illustrate a transfer leveraging these
structures, a trajectory is designed to deliver a space-
craft from an L4 SPO with Hnat = −1.487 to an L1

Lyapunov orbit with Hnat = −1.503. An orbit chain
technique is utilized to construct two different ini-
tial designs: (i) a chain of purely natural orbits and
their associated manifolds, and (ii) a chain that in-
cludes natural orbits and the manifold of a nearby
L4 LTPO. Once an initial guess is constructed, a di-
rect transcription algorithm is employed to remove
discontinuities in the solution, yielding a feasible de-
sign. Finally, the feasible solution is optimized to
maximize the final spacecraft mass, and the solutions
resulting from the two initial designs are compared.

An orbit chain that delivers the spacecraft from

(a) Transfer from orbit chain initialized from only natural
dynamical structures.

(b) Transfer from orbit chain initialized with low-thrust pe-
riodic orbits.

Fig. 6: Direct transcription is employed to compute
mass optimal low-thrust transfers using the orbit
chain initial guesses.

the L4 SPO to the L1 Lyapunov is first constructed
leveraging only dynamical structures from the natu-
ral CR3BP. Stable manifolds associated with the L1

orbit, plotted in Figure 9(a), pass near the L4 SPO
and offer a suitable geometry to facilitate the trans-
fer. However, while these natural manifolds are lo-
cated near the L4 orbit in position space, a large ve-
locity discontinuity, i.e., an Hnat discontinuity, exists
between the L1 Lyapunov manifolds and the SPO.
As the L4 orbit is stable and does not possess man-
ifolds, no additional natural structures to guide flow
between the two orbits are immediately apparent. To
complete the transfer design, five revolutions along
the initial L4 orbit and a single revolution of the L1
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(a) Optimal transfer generated with natural dynamical struc-
tures.
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(b) Optimal transfer generated with low-thrust dynamical
structures.

Fig. 7: The time history of the low-thrust Hamilto-
nian, Hlt, for each transfer offers insight on how
low-thrust maneuvers change the energy of the
spacecraft to achieve the transfer

orbit are included. The five revolutions along the
SPO are included so that the transfer time of flight
(TOF) is similar to the design that utilizes a low-
thrust manifold. In addition to adding transfer time,
this stacking supplies ample time and space for the
spacecraft to make the required energy change be-
tween the L1 manifold and the L4 SPO, facilitating
convergence in the direct transcription algorithm.

The second transfer design offers an alternate ge-
ometry by leveraging low-thrust dynamical struc-
tures. While Hnat is constant on every natural struc-
ture, the addition of low-thrust causes an evolving
Hnat value along low-thrust dynamical structures

(a) Transfer generated with natural dynamical structures.

(b) Transfer generated with low-thrust dynamical structures.

Fig. 8: Direct transcription is employed to compute
mass optimal low-thrust transfers in an N -Body
ephemeris model using the CR3BP result as an
initial guesses.

(Hlt, on the other hand, remains constant). Accord-
ingly, both geometric and energetic paths may be in-
corporated with low-thrust structures. To accomplish
the L4 to L1 transfer, an unstable LTPO with a sim-
ilar geometry and energy as the natural L4 SPO is
identified to reduce position and velocity discontinu-
ities between the two structures. The manifolds of
this low-thrust orbit, plotted in Figure 9(b), offer an
alternative set of paths in position space to complete
the transfer. To design the transfer, a single revo-
lution of the natural L4 SPO is included, followed
by a manifold originating from the nearby L4 LTPO
and then two revolutions of the natural L1 Lyapunov
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(a) Stable manifolds of an L1 Lyapunov orbit with Hnat =
−1.503 approach the L4 SPO in reverse time.

(b) Unstable manifolds of a low-thrust L4 LTPO with α =
60o and Hlt = −1.553 approach the lunar region from two
directions.

Fig. 9: The invariant manifolds of a low-thrust L4

LTPO offer different geometries than those of the
destination L1 Lyapunov manifold.

orbit.

In both scenarios, the manifold path best suited
for a given orbit chain is chosen by inspecting the to-
tal set of stable or unstable manifolds and identifying
the manifold that demonstrates the closest intersec-
tion in position space with the adjacent orbit in the
chain. Additionally, the direction and magnitude of
the velocity vector at the end of the manifold is se-
lected to be similar to the point on the final orbit
that the manifold intersects. The velocity states are
directly considered in this case, rather than the anal-
ogous energy values examined in the previous appli-
cation, because of the critical importance of matching

velocity direction when linking the manifolds to an-
other dynamical structure. This change in strategy
is necessary because invariant manifolds at the same
value of Hnat or Hlt can exhibit wildly different po-
sition and velocity profiles, therefore it is necessary
to carefully consider these state differences when as-
sembling an orbit chain to ensure the initial guess
contains reasonably small discontinuities.

Following the prescribed manifold selection strat-
egy, the initial designs for each transfer are con-
structed. The all-natural design, plotted in Figure
10(a), includes a direct path between the two pe-
riodic orbits via an L1 stable manifold arc. The
low-thrust design, seen in Figure 10(b), leverages
a low-thrust manifold that encircles the Earth be-
fore reaching the destination L1 orbit. Both initial
guesses are converged via direct transcription, first
for feasibility, and then for mass-optimality. The fi-
nal, optimized results, plotted in Figure 11, possess
distinctly different geometries that are biased by the
initial designs. The solution initialized with only nat-
ural structures, seen in Figure 11(a), approximately
mirrors the initial geometry (Figure 10(a)) with a
transfer approaching the L1 Lyapunov from the right,
consistent with the L1 stable manifold. The solu-
tion leveraging low-thrust structures, plotted in Fig-
ure 11(b), also remains generally consistent with the
initial geometry (Figure 10(b)), approaching the Lya-
punov orbit from the left after encircling the Earth.
As expected, the structure of the initial guess biases
the solution towards particular characteristics.

Comparison of the optimal low-thrust transfers
displayed in Figure 11 reveals the influence of the
different initial guesses and the benefits offered by in-
cluding low-thrust dynamical structures. When only
natural structures are included in the initial guess,
the resulting transfer, shown in Figure 11(a), utilizes
an extended thrust segment near the initial L4 SPO
to depart this orbit and another brief thrust arc to
connect with the stable manifold of the L1 Lyapunov
orbit. The initial revolution of the L4 SPO employed
in the initial guess remains in place, while the subse-
quent stacked revolutions are spread over the L4 re-
gion to facilitate the connection with the stable man-
ifold. The time of flight of this transfer is about 205
days; a transfer with a shorter TOF is likely avail-
able if the initial guess is modified to include fewer
revolutions of the L4 SPO.

The transfer constructed with low-thrust dynami-
cal structures, displayed in Figure 11(b), also exhibits
loops near L4 because the low-thrust periodic orbit
and manifold included in the initial guess possess this
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(a) Orbit chain with only natural dynamical structures

(b) Orbit chain with low-thrust dynamical structures

Fig. 10: The orbit chain approach is employed to con-
struct two different initial guesses for the de-
sired transfer. The first leverages only natural
dynamical structures while the second includes
low-thrust structures. Both orbit chains exploit
invariant manifolds.

motion. The time of flight of this transfer is approx-
imately 201 days, consistent with the initial design.
The geometric and time of flight differences of the two
transfers lead to different propellant usages: 2.422 kg
and 1.518 kg (for a 1000 kg spacecraft) for the natu-
ral and low-thrust seeded designs, respectively. These
differences, summarized in Table 2, may lie within the
variability of the solution due to numerical considera-
tions such as node placement. Nonetheless, the trans-
fer generated using low-thrust dynamical structures
does require less propellant and ∆V than the alter-
nate case. In addition to this quantitative difference,

(a) Transfer from orbit chain with only natural dynamical
structures

(b) Transfer from orbit chain with low-thrust dynamical
structures

Fig. 11: Direct transcription is employed to compute
mass optimal low-thrust transfers using the orbit
chain initial guesses.

the inclusion of low-thrust structures also enables an
alternative transfer geometry that is well-predicted
by the initial design. In this case, the low-thrust
manifold geometry is not straightforwardly available
from the natural dynamical structures of interest, i.e.,
the L1 Lyapunov, its manifolds, and L4 SPO. The
novel geometries, and, in some cases, improved op-
timal solutions, indicate the benefit of incorporating
low-thrust dynamical structures in the transfer design
process.

Finally, to validate that these transfers and the
methods employed to compute them are available for
practical applications, both low-thrust transfers are
transitioned to an N -body ephemeris model that in-
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Init. Guess TOF [days] ∆m [kg] ∆V [m/s]

Nat. Only 205.188 2.422 71.331
With LT 200.756 1.518 44.694

Table 2: Summary of key parameters for the low-
thrust transfers computed in the Earth-Moon
CR3BP for Application 2.

cludes the Earth, Moon, Sun, and Jupiter. The re-
sulting transfers are displayed in Figure 12. Clearly,
both transfers retain a similar geometry to what was
observed in the CR3BP results. This result indicates
that similar trajectories are available in an ephemeris
model and may be leveraged in realistic mission sce-
narios.

VI. Concluding Remarks

An orbit chain approach to low-thrust trajectory
design enables rapid exploration of the design space
afforded by a given dynamical model. Experimen-
tation with the various combinations of dynamical
structures that may be included in an orbit chain
often reveals different local “basins” of optimal so-
lutions. This investigation demonstrates that dy-
namical structures generated in the CR3BP-LT can
be incorporated into an orbit chain technique in the
same manner as natural periodic orbits and mani-
folds. Through the application of dynamical sys-
tems theory to the CR3BP-LT, low-thrust enabled
dynamical structures with novel geometries and en-
ergy profiles may be generated. The new catalog of
low-thrust periodic orbits and manifolds offered by
the CR3BP-LT permits the assembly of initial guesses
with reduced state discontinuities or gaps in energy
level, as seen in the first sample application. How-
ever, this application also illustrates that, despite
their unique properties, the inclusion of low-thrust
dynamical structures in an orbit chain can lead to
an optimal solution that is nearly identical to the
one computed with an initial guess composed of only
natural dynamical structures. Conversely, the second
sample application shows that a drastically different
local optimal is obtained when a low-thrust dynam-
ical structure with a very different geometry is uti-
lized. Furthermore, this application utilizes a mani-
fold from a low-thrust enabled variant of a naturally
stable periodic orbit, and, this alone demonstrates
the utility of employing low-thrust dynamical struc-
tures for trajectory design. Overall, low-thrust dy-
namical structures offer a new catalog of options that

(a) Transfer generated with natural dynamical structures.

(b) Transfer generated with low-thrust dynamical structures.

Fig. 12: Direct transcription is employed to compute
mass optimal low-thrust transfers in an N -Body
ephemeris model using the CR3BP result as an
initial guesses.

may be leveraged in an orbit chain technique for the
computation of optimal low-thrust trajectories. This
new array of options expands the design space by en-
abling low-thrust trajectories with different times of
flight, propellant consumption, or geometric charac-
teristics to be computed.
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