
BDDs on the Run?

Klaus Havelund1 and Doron Peled2

1Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, USA

2 Department of Computer Science
Bar Ilan University, Ramat Gan, Israel

Abstract. Runtime verification (RV) of first-order temporal logic must handle a
potentially large amount of data, accumulated during the monitoring of an execu-
tion. The DEJAVU RV system represents data elements and relations using BDDs.
This achieves a compact representation, which allows monitoring long execu-
tions. However, the potentially unbounded, and frequently very large amounts of
data values can, ultimately, limit the executions that can be monitored. We present
an automatic method for “forgetting” data values when they no longer affect the
RV verdict on an observed execution. We describe the algorithm and illustrate its
operation through an example.

1 Introduction

Runtime verification (RV) can be used to check the execution (run) of a system against
a temporal property, yielding an alarm when the property is violated, so that aversive
action can be taken. For each consumed event the monitor performs incremental compu-
tation, updating its internal memory, and has to decide whether the property is violated
based on the finite part of the execution trace that it has viewed so far. To inspect an
execution, the monitored system is instrumented to report on occurrences of events.

Runtime verification is often applied to executions that consist of events that contain
data values [1–7, 9–13, 16–18]. A large amount of different observed data values can
pose a challenge to the efficiency of RV systems, in terms of time and space, since it is
essential to keep up with rapid occurrence of events in very long executions. We present
the DEJAVU system and its logic QTL (Quantified Temporal Logic), which in its core
supports past temporal properties, including existential quantification, predicates with
data values and variables, the Boolean operators and, not, and the modal operators 	
for previous-time and S for since. Several standard operators are derived from these.

In [14] we presented an early version of DEJAVU and its algorithm based on the use
of BDDs. We describe here furthermore an approach for detecting when data elements
that were seen so far do not affect the rest of the execution and can be discarded, also

? The research performed by the first author was carried out at Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National Aeronautics and Space Ad-
ministration. The research performed by the second author was partially funded by ISF grant
2239/15: “Runtime Measuring and Checking of Cyber Physical Systems”.

referred to as dynamic data reclamation. As an example, consider the following for-
mula, asserting that data can be written to a file only if it has been opened in the past,
and not closed since then.

∀ f ((∃d write(f ,d))−→ (¬close(f)S open(f))) (1)

We can observe that if a file was opened and subsequently closed, then the property
would be invalidated if a value is written to that file, just as in the case where the
file was never opened. This means that we can “forget” that a file was opened when
it is closed, without affecting our ability to monitor the formula. If there are no more
than N files simultaneously opened at any time, then we need space for only N files
for monitoring the property. This is in contrast to [14], where space for all new file
names must be allocated. We present the algorithm for storing data as BDDs, and the
automatic detection of data values that are not required anymore, reclaiming the space
used for storing them.

The contents of the paper is as follows. Section 2 presents the syntax and semantics
of QTL. Section 3 describes the basic BDD-based algorithm. Section 4 outlines the
dynamic data reclamation approach. Section 5 illustrates the extended algorithm by
executing a monitor on an example trace. Finally Section 6 concludes the paper.

2 Syntax and Semantics

Let X be a finite set of variables. An assignment over a set of variables W ⊆ X maps
each variable x ∈ W to a value from its associated domain domain(x). We assume
that the domains (e.g., integers, strings) are infinite (see [14] for dealing with finite
domains). For example [x→ 5,y→ “abc”] maps x to 5 and y to “abc”. Let T be a
set of predicate names, where each predicate name p is associated with some domain
domain(p). A predicate is constructed from a predicate name and a variable or a con-
stant of the same type. Thus, if the predicate name p and the variable x are associated
with the domain of strings, we have predicates like p(“gaga”), and p(x). Predicates over
constants are called ground predicates. An event is a finite set of ground predicates. For
example, if T = {p,q,r}, then {p(“xyzzy”),q(3)} is a possible event. An execution
trace σ = s1,s2, . . . is a finite sequence of events.

The formulas of the logic QTL are defined by the following grammar. For simplicity
of the presentation, we define here the logic with unary predicates, but this is not due
to any principle limitation, and, in fact, our implementation supports predicates with
multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground predicate
p(a) occurs in the most recent event. The formula p(x), for a variable x ∈ X , holds
with a binding of x to the value a if a ground predicate p(a) appears in the most recent
event. The formula (ϕ S ψ) means that ψ held in the past (possibly now) and since
then ϕ has been true. The formula 	 ϕ means that ϕ is true in the previous event.
We can furthermore define the following derived operators: false = ¬true, (ϕ∨ψ) =
¬(¬ϕ∧¬ψ), (ϕ→ψ) = (¬ϕ∨ψ), P ϕ= (trueS ϕ), H ϕ=¬P ¬ϕ, and ∀x ϕ=¬∃x¬ϕ.

2

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. Let
I[ϕ,σ, i] be the semantic function, defined below. It returns the set of assignments that
satisfy ϕ after the ith event of the execution σ. The empty set of assignments /0 behaves
as the Boolean constant 0 and the singleton set that contains an assignment over an
empty set of variables {ε} behaves as the Boolean constant 1. We define the union
and intersection operators on sets of assignments, even if they are defined over non
identical sets of variables. In this case, the assignments are extended over the union of
the variables. Thus intersection between two sets of assignments, A1 and A2, is defined
like a database “join” operator; i.e., it consists of assignments whose projection on the
common variables agree with an assignment in A1 and with an assignment in A2. Union
is defined as the operator dual of intersection. Let Γ be a set of assignments over a set
of variables W ; we denote by hide(Γ,x) the set of assignments over W \ {x}, obtained
from Γ by removing the assignment to x for each element of Γ. In particular, if Γ is a
set of assignments over just the variable x, then hide(Γ,x) is {ε} when Γ is nonempty,
and /0 otherwise. Afree(ϕ) is the set of all possible assignments of values to the variables
that appear free in ϕ. We add a 0 position for each sequence σ (which starts with s1),
where I returns the empty set for each formula. The assignment-set semantics of QTL
is shown in the following. For all occurrences of i it is assumed that i > 0.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
– I[p(x),σ, i] = {[x 7→ a] | p(a) ∈ σ[i]}.
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[ϕ,σ, i] = I[ϕ,σ, i−1].
– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

3 An Efficient Algorithm using BDDs

We describe here an algorithm for monitoring QTL, first presented in [14], and imple-
mented as the first version of the tool DEJAVU. We shall represent a set of assignments
as an Ordered Binary Decision Diagram (OBDD, although we write simply BDD) [8].

Recall that a BDD is a directed acyclic graph (DAG), where the non-leaf nodes
represent Boolean variables. Figures 2 and 3 (to be explained) show BDDs over the
BDD variables b0, b1, b2, and b3. A BDD is a compact representation of a Boolean
formula over these variables, and can be used to determine, for a given assignment to
the variables, whether the formula is true or not. Each non-leaf node is the source of two
arrows leading to other nodes. A dotted-line arrow represents that the Boolean variable
has the value 0 (false), while a thick-line arrow represents that it has the value 1 (true).
The nodes in the DAG have the same order along all paths from the root. However,
some of the nodes may be absent along some paths, when the result does not depend
on the value of the corresponding Boolean variable. Each path leads to a leaf node that
is marked by either 0 (false) or 1 (true), representing the Boolean value returned by the
formula for the variable assignment corresponding to the followed path.

3

Assume that we see p(“ab”), p(“de”), p(“af”) and q(“fg”) in subsequent events
in an execution trace, where p and q are predicates over the domain of strings. When
a value associated with a variable appears for the first time in the current event (in a
ground predicate), we add it to the set of values of that domain that were seen. We
assign to each new value an enumeration, represented as a binary number, and use
a hash table to point from the value to its enumeration. The least significant bit in an
enumeration is represented by BDD variable b0, and the most significant bit by the BDD
variable with highest index. Using a three-bit enumeration b2b1b0, the first encountered
value “ab” can be represented1 as the bit string 000, “de” as 001, “af” as 010, and “fg”
as 011. A BDD for a subset of these values returns a 1 for each bit string representing
an enumeration of a value in the set, and 0 otherwise. E.g. a BDD representing the
set {“de”,“af”} (2nd and 3rd values) returns 1 for 001 and 010. This is the Boolean
function ¬b2∧ (b1↔¬b0).

When representing a set of assignments for two variables x and y with k bits each,
we use Boolean BDD variables xk−1, . . . ,x0,yk−1, . . .y0. A BDD will return a 1 for
each bit string consisting of the concatenation of enumerations that correspond to the
represented assignments, and 0 otherwise. For example, to represent the assignment
[x 7→ “de”,y 7→ “af”], where “de” is enumerated as 001 and “af” with 010, the BDD
will return a 1 for 001010. The BDD that returns always 0 is denoted by BDD(⊥), and
the BDD that returns always 1 is denoted by BDD(>).

Given a ground predicate p(a), observed in the currently monitored event of the
execution, then when matching with p(x) in the monitored property, let lookup(x,a)
be the enumeration of a. If this is a’s first occurrence, then it will be assigned a new
enumeration. Otherwise, lookup returns the enumeration that a received before. The
function build(x,V), where V is a set of values, returns a BDD that represents the set
of assignments where x is mapped to (the enumeration of) a for a ∈ V . This BDD is
independent of the values assigned to any variable other than x, i.e., they can have any
value.

The algorithm, shown below, operates on two vectors (arrays) of values indexed by
subformulas (as in [15]): pre for the state before that event, and now for the current state
(after the last seen event).

1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥).
– now(p(x)) := build(x,V) where V = {a | p(a) ∈ s}.
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕSψ)))).

1 Enumerations are here selected using a counter initialized to 0, as in [14]. The data reclamation
solution in Sect. 4 instead uses a SAT solver.

4

– now(ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . ,xk−1〉,now(ϕ)).

5. Goto step 2.

At any point during monitoring, enumerations that are not used in the pre and now
BDDs represent all values that have not been seen so far in the input. In particular,
we save for that purpose the highest valued enumeration 11 . . .11, which we denote by
BDD(11 . . .11). This allows us to use a finite representation and quantify existentially
and universally over all values in infinite domains.

4 Dynamic Data Reclamation

We now describe the possibility of reusing enumerations of data values, when this does
not affect the decision whether the property holds or not. When a value a is reclaimed,
its enumeration e can be reused for representing another value that appears later in the
execution.

Recall that upon the occurrence of a new event, the basic algorithm uses the BDD
pre(ψ), for any subformula ψ, representing assignments satisfying this subformula cal-
culated based on the sequence monitored so far before the new event. Since these BDDs
sufficiently summarize the information that will be used about the execution monitored
so far, reclaiming data can be automated without user guidance or static formula analy-
sis, solely based on the information the BDDs contain.

We are seeking a condition for reclaiming values of a variable x. Let A be a set of
assignments over some variables that include x. Denote by A[x = a] the set of assign-
ments from A in which the value of x is a. We say that the values a and b are analogous
for variable x in A, if hide(A[x = a],x) = hide(A[x = b],x). This means that a and b, as
values of the variable x, are related to all other values in A in the same way. A value
can be reclaimed if it is analogous to the values not seen yet in all the assignments
represented in pre(ψ), for each subformula ψ.

As the pre BDDs use enumerations to represent values, we find the enumerations
that can be reclaimed. Then, their corresponding values are removed from the hash ta-
ble, and the enumerations can later be reused to represent new values. Recall that the
enumeration 11 . . .11 represents all the values that were not seen so far. Thus, we can
check whether a value a for x is analogous to the values not seen so far for x by per-
forming the checks on the pre BDDs betwen the enumeration of a and the enumeration
11 . . .11. In fact, we do not have to perform the checks enumeration by enumeration,
but use a BDD expression that constructs a BDD representing (returning 1 for) all enu-
merations that can be reclaimed for a variable x.

Assume that a subformula ψ has three free variables, x, y and z, each with k bits,
i.e., x0, . . . ,xk−1, y0, . . . ,yk−1 and z0, . . . ,zk−1. The following expression returns a BDD
representing the enumerations for values of x in assignments represented by pre(ψ) that
are related to enumerations of y and z in the same way as 11 . . .11.

Iψ,x = ∀y0 . . .∀yk−1∀z0 . . .∀zk−1(pre(ψ)[x0 \1, . . .xk−1 \1]↔ pre(ψ))

To take advantage of reclaimed enumerations, we represent a set of available enumer-
ations for a variable x using a BDD avail(x). Initially at the start of monitoring, we set

5

avail(x) := ¬BDD(11 . . .11). Let sub(ϕ) be the set of subformulas of the property ϕ.
When we are short in the number of available enumerations and thus we want to per-
form data reclamation, we calculate Iψ,x for all the subformulas ψ ∈ sub(ϕ) that contain
x as a free variable, and set:

avail(x) := (
∧

ψ ∈ sub(ϕ), x ∈ free(ψ)

Iψ,x)∧¬BDD(11 . . .11)

This updates avail(x) to denote all available enumerations, including reclaimed enumer-
ations. When we need a new enumeration for variable x, we just pick some enumeration
e that satisfies avail(x). Let BDD(e) denote a BDD that represents only the enumeration
e. To remove that enumeration from avail(x), we update avail(x) as follows:

avail(x) := avail(x)∧¬BDD(e)

The formula Iψ,x includes multiple quantifications (over the bits used to represent the
free variables other than x). Therefore, it may not be efficient to reclaim enumerations
too frequently. We can reclaim enumerations either periodically or when avail(x) be-
comes empty or close to empty.

As the BDD-based algorithm detects which enumerations e can be reclaimed, we
need to identify the related data value a and update the hash table, so that a will not
point to e. In particular, we need to be able to find the data that is represented by a given
enumeration. To do that, one can use a trie: in our case this will be a trie with at most
two edges from each node, marked with either 0 or 1. Traversing the trie from its root
node on edges labeled according to the enumeration e reaches a node that contains the
value a that is enumerated as e. The traversing and updating the trie is linear per each
enumeration. The current implementation, however, uses the simpler straightforward
strategy of walking though all values and removing those which point to reclaimed
enumerations.

5 Example Monitor Execution

In this section we illustrate the working of the algorithm with a minimal, and yet com-
plete, example. Specifically we execute the algorithm on formula (1) and the following
trace consisting of nine events:

{open(f1)},{open(f2)},{open(f3)},
{close(f1)},{close(f2)},{close(f3)},
{open(f1)},{open(f4)},{write(f4,2)}

The formula contains two variables f and d, and we use just two bits to represent each
of these, yielding four possible bit combinations per variable: 00, 01, 10, and 11. The
enumeration 11, however, as has been explained, is devoted to represent values not seen
yet in the trace during monitoring, hence with two bits we can represent three values
observed in the trace at a time.

To recall previous material, the algorithm in Sect. 3 updates for each new event
the now array, updating entries for innermost formulas first. References are made to

6

0 : Forall f . (Exists d . write(f,d)) -> !close(f) S open(f)

1 : (Exists d . write(f,d)) -> !close(f) S open(f)

2 : Exists d . write(f,d) 4 : !close(f) S open(f)

3 : write(f,d) 5 : !close(f) 7 : open(f)

6 : close(f)

override def evaluate(): Boolean = {
now(7) = build("open")(V("f"))
now(6) = build("close")(V("f"))
now(5) = now(6).not()
now(4) = now(7).or(now(5).and(pre(4)))
now(3) = build("write")(V("f"),V("d"))
now(2) = now(3).exist(var d.quantvar)
now(1) = now(2).not().or(now(4))
now(0) = now(1).forAll (var f.quantvar)
val error = now(0).isZero
tmp = now; now = pre; pre = tmp
! error

}

Fig. 1: Numbering of subformulas and generated monitor for property (1).

the pre array when computing BDDs for subformulas containing a temporal operator
at the outermost level, such as in this case the subformula (¬close(f)S open(f)). The
subformulas-first principle is achieved by enumerating subformulas as shown in Fig. 1
(left) and use this enumeration to update the now array in the generated monitor code2,
as shown in Fig. 1 (right).

We illustrate now the BDDs generated for selected positions in the now array as the
events in the above trace are submitted to the monitor. Figure 2 shows selected BDDs
from monitoring the first six events, whereas Fig. 3 shows selected BDDs from mon-
itoring the remaining three events. A BDD is either the denotation of avail(f) (Sect.
4), or the contents of the now array at an index corresponding to a position in the sub-
formula tree in Fig. 1 (left). The caption for each BDD identifies either avail(f) or a
subformula index, an @-sign, and the event that caused the computation of this BDD.

Recall that upon analysis of a new event, a data value in the event for a variable is
mapped to one of the bit enumerations 00, 01, or 10 (in a hash table for that variable).
The BDD denoted by a subformula (and stored in the now array at the appropriate index)
for a single variable will represent a subset of these three enumerations, representing
the set of values making the subformula true. The BDD for a variable has a unique
BDD variable for each bit. In our case BDD variables b0 and b1 are used to represent
the variable f , and BDD variables b2 and b3 are used to represent variable d. The
monitoring of the trace above proceeds as follows.

Initially: Figure 2a shows the BDD representing initially available enumerations
for variable f (avail(f)). These are all enumerations different from 11 (namely 00, 01,
and 10). The enumeration 11 is the reserved enumeration representing all values not yet
seen, and is the only assignment leading to leaf-node 0 (follow the fully drawn arrows).

After event open(f1): Figure 2b shows the generated BDD for the enumeration 10
(note that the least significant rightmost bit in 10 corresponds to the BDD variable b0 at

2 An additional 600+ lines of, mostly property-independent, code is generated.

7

01

b0

b1

(a) avail(f) initially

0 1

b0

b1

(b) node 7 @ open(f1)

0 1

b0

b1

(c) node 4 @ open(f1)

01

b1

(d) avail(f) @ open(f1)

0 1

b0

b1

(e) node 7 @ open(f2)

0 1

b0

b1 b1

(f) node 4: @ open(f2)

01

b0

b1

(g) node 7 @ open(f3)

01

b0

b1

(h) node 4: @ open(f3)

01

b1

(i) node 4 @ close(f1)

Fig. 2: Selection of BDDs computed during monitoring of first six events.

8

01

b0

b1

(a) Iψ, f for
node 4 @ open(f4)

01

b1

(b) avail(f) @ open(f4)

0 1

b0

b1

(c) node 7 @ open(f4)

0 1

b0

b1

b2

b3

(d) node 3 @ write(f4,2)

0 1

b0

b1

(e) node 2 @ write(f4,2)

Fig. 3: Selection of BDDs computed during monitoring of remaining three events.

the top of the BDD). This enumeration represents file f1, and is picked from avail(f)
using a SAT solver. Figure 2c shows the BDD for subformula 4 (¬close(f)S open(f)).
It represents the enumeration 10 for file f1, since this is the only file that has been
opened so far and not closed yet, and this BDD is therefore the same as the one in
Fig. 2b. Figure 2d shows the BDD denoted by avail(f) thereafter, representing the set
{00,01}. Note that these are the enumerations where the leftmost (most signifiant) bit
is 0, shown in the BDD as BDD variable b1 having value 0 (the dashed line).

After event open(f2): Figure 2e shows the enumeration 01 allocated for file f2.
avail(f) is updated accordingly, subtracting 01 (now shown). Figure 2f shows the
BDD for subformula 4, which now represents the set containing the two enumerations
{10,01}. This illustrates the core principle of representing a set of assignments as a
BDD. This BDD is obtained by performing a BDD or (corresponding to a set union)
on the BDDs for 10 respectively 01.

After event open(f3): Figure 2g shows the last available enumeration 00 allocated
for file f3. avail(f) is updated accordingly, subtracting 00, and now becomes BDD(⊥)

9

(not shown), that returns 0 for all enumerations. Figure 2h shows the BDD for subfor-
mula 4, which now represents the set containing the three enumerations {10,01,00}, in
other words: any enumeration except 11, which is the only enumeration leading to 0.

After event close(f1): Figure 2i shows the BDD for node 4 after removal of the
enumeration 10 representing file f1, resulting in the set: {01,00}, which contains all
enumerations where BDD variable b1 (representing the most significant bit) is 0.

After events close(f2) and close(f3): The subsequent closing of files f2 and f3
results in a situation where node 4 is BDD(⊥), since all files now have been closed.
Furthermore, avail(f) is also still BDD(⊥), meaning that the opening of a new file not
yet seen will cause reclamation to be initiated.

After event open(f1): The re-opening of file f1 is possible without data reclamation
(even though avail(f) is BDD(⊥)) since the former enumeration 10 associated with f1
is still recorded in the hash table and is therefore reused. This leads to a BDD for node
4 that is the same as in Fig. 2c. avail(f) remains BDD(⊥).

After event open(f4): The opening of file f4 causes data reclamation since there are
no more available enumerations: avail(f) is BDD(⊥). Recall from Sect. 4 that the new
value of avail(f) is computed by computing the BDD Iψ, f of available enumerations
for variable f for each subformula ψ, and and-ing them together with not(BDD(11)).
We only need to compute these contributions for temporal formulas. Figure 3a shows
the BDD Iψ, f for ψ = (¬close(f)S open(f)). Since file f1 was re-opened, and thereby
its enumeration 10 reused, the irrelevant enumerations Iψ, f stemming from this subfor-
mula are all the enumerations (including the special value 11, which will be subtracted
later) that are different from 10, which here is the only enumeration leading to a 0-leaf.
Figure 3b shows the value of avail(f) after these computations have been performed,
resulting in the BDD representing all enumerations different from 10 and 11. These are
the enumerations {01,00} (BDD variable b1, representing the most significant bit, is
0), which now can be allocated again for new data. Specifically, Fig. 3c shows the BDD
for the allocation of enumeration 01 for the new file f4.

After event write(f4,2): Above we have seen examples of how a set of assignments
to a single variable (f) is represented as a BDD. The writing of the datum 2 to file f4
illustrates how assignments to multiple variables, in this case f and d, are represented.
Writing 2 to file f4 invokes the just allocated enumeration 01 for f4 and a new enu-
meration 10 for d (same procedure as for f). Figure 3d shows the BDD representing
the juxtaposition of these two enumerations. BDD variables b0 and b1 (representing f)
denote the enumeration 01, and BDD variables b2 and b3 (representing d) denote the
enumeration 10. This BDD therefore represents the assignment [f 7→ f4,d 7→ 2]. Finally,
Fig. 3e shows the BDD in node 2 of Fig. 1 after performing existential quantification
over d on the 4-variable BDD in Figure 3d. The result is obtained by removing BDD
variables b2 and b3, and repointing BDD variable b2’s incoming arrow to leaf-node 1.

6 Conclusion

We described a BDD-based algorithm for monitoring executions of a system against
first-order past time temporal logic properties. The algorithm supports automated dy-
namic data reclamation, removing data values when they no longer affect the verdict.

10

The BDD data structure appears to offer advantages for runtime verification w.r.t. effi-
ciency of monitoring, but also w.r.t. expressiveness of the logic. Although not discussed
in this paper, DEJAVU supports numerical relations between variables, and, in addition
to quantification over all possible values in an infinite domain, also quantification only
over values seen in the trace. Future work includes support for real-time constraints,
and functions applied to data values.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, J. Tibble, Adding Trace Matching with Free Variables to AspectJ,
OOPSLA’05, SIGPLAN Not. 40(10), 345-364, ACM, 2005.

2. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, Z. Manna: LOLA: Runtime Monitoring of Synchronous Systems, TIME’05,
IEEE Computer Society, 166-174, 2005.

3. H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-Based Runtime Verification, VM-
CAI’04, LNCS 2937, 44-57, Springer, 2004.

4. H. Barringer, K. Havelund, TraceContract: A Scala DSL for Trace Analysis, FM’11, LNCS
6664, 57-72, Springer, 2011.

5. H. Barringer, D. Rydeheard, K. Havelund, Rule Systems for Run-Time Monitoring: from
Eagle to RuleR, RV’07, LNCS 4839, 111-125, Springer, 2007.

6. D. A. Basin, F. Klaedtke, S. Müller, E. Zalinescu, Monitoring Metric First-Order Temporal
Properties, Journal of the ACM 62(2), 1-45, 2015.

7. A. Bauer, J.C. Küster, G. Vegliach, From Propositional to First-Order Monitoring, RV’13,
LNCS 8174, 59-75, Springer, 2013.

8. R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,
ACM Comput. Surv. 24(3), 293-318, 1992.

9. C. Colombo, G.J. Pace, G. Schneider, LARVA – Safer Monitoring of Real-Time Java Pro-
grams (Tool Paper), SEFM’09, IEEE Computer Society, 33-37, 2009.

10. N. Decker, M. Leucker, D. Thoma, Monitoring Modulo Theories, Int. Journal on Software
Tools for Technology Transfer 18(2), 205-225, Springer, 2016.

11. J. Goubault-Larrecq, J. Olivain, A Smell of ORCHIDS, RV’08, LNCS 5289, 1-20, Springer,
2008.

12. S. Hallé, R. Villemaire, Runtime Enforcement of Web Service Message Contracts with Data,
IEEE Transactions on Services Computing 5(2), 192-206, 2012.

13. K. Havelund, Rule-based Runtime Verification Revisited, Int. Journal on Software Tools for
Technology Transfer 17(2), 143-170, Springer, 2015.

14. K. Havelund, D. Peled, D. Ulus, First-order Temporal Logic Monitoring with BDDs, FM-
CAD’17, IEEE, 116-123, 2017.

15. K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties, TACAS’02, LNCS
2280, 342-356, Springer, 2002.

16. M. Kim, S. Kannan, I. Lee, O. Sokolsky, Java-MaC, A Run-time Assurance Tool for Java,
RV’01, ENTCS 55(2), 218-235, Elsevier, 2001.

17. P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An Overview of the MOP Runtime
Verification Framework, Int. Journal on Software Tools for Technology Transfer 14(3), 249-
289, Springer, 2012.

18. G. Reger, H. Cruz, D. Rydeheard, MarQ: Monitoring at Runtime with QEA, TACAS’15,
LNCS 9035, 596-610, Springer, 2015.

11

