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Decelerator Development
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Disk-Gap-Band (DGB) Parachute 
Heritage

• Developed in the 60s & 
70s for Viking
– High Altitude Testing
– Wind Tunnel Testing
– Low Altitude Drop

• Successfully used on 6 
Mars missions
– Leveraged Viking 

development

MSL (2012)MER (2004)Viking (1974)

MER Drop Test MSL Wind Tunnel Test



LDSD: Low-Density Supersonic Decelerator



6m Attached Torus Overview
• Single pressurized torus with a burble fence for stability
• Simple, low-mass design to provide a ~50 - 70% increase in 

drag over an MSL aeroshell
• Internal pressure produces a rigid shape absent of aeroelastic 

deformations
• Allows for rapid inflation in <1 sec, minimizing vehicle 

disturbances
• Designed for deployment and operation at up to Mach 4



8m Attached Isotensoid Overview
• Represents first forays into understanding nature of highly 

flexible attached decelerator systems
• Structurally favorable design allows for minimal inflation 

pressure
– Low-stresses => reduced canopy mass
– Design allows for ram-air inflation (reduced inflation 

system mass)
• Subject of considerable subscale testing prior to Mars Viking 

program
– More recently tested at sub/transonic conditions by NASA

• Will be largest non-parachute decelerator ever tested at 
supersonic conditions

• Designed for deployment and operation at up to Mach 4



30.5m Supersonic Parachute Overview
• Ringsail configuration originally tested in conjunction 

with the Disk-Gap-Band for supersonic use on Viking 
missions

• Performance very similar to DGB, though DGB 
selected for simplicity of configuration

• Recent Ringsails have shown continued 
improvements in drag and stability

• Modifications still necessary for supersonic use
• Design features allow for improved opening reliability 

and ability to mitigate inflation loads via reefing (in 
theory)



Aerodecelerator Qualification Summary



Testing: SIAD



Testing: SIAD



Testing: Parachute



Testing: Parachute



Testing: Parachute



Testing: Supersonic Flight Dynamics Test



Testing: High Altitude



Testing: High Altitude



Testing: Accomplishments
Largest inflatable aerodynamic decelerator 
ever deployed and tested at supersonic 
conditions

Largest ballute ever successfully flown at 
supersonic conditions

First ever supersonic pilot deployment of a 
large parachute

Largest supersonic parachute ever deployed

Unprecedented quantity and quality of data 
collected



DGB Heritage & Design Margins
• Strength margins may have been eroding in recent DGB designs:

• The Low-Density Supersonic Decelerators Project saw failures of two supersonic 
ringsail parachutes well below those achieved in supersonic tests

• LDSD experience stresses seen in subsonic testing may not bound the stresses seen 
in supersonic testing, at least for some parachutes
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Clark & Tanner, IEEE Aerospace 
Conference Paper 2466 (2017):

Broadcloth ultimate load estimated 
by treating the disk as a pressure 
vessel:

Disk diameter Broadcloth stress 
(per unit length)



The ASPIRE Project
• Advanced Supersonic Parachute Inflation Research Experiments Project 

established to investigate the physics of supersonic DGB inflation
• DGBs to be tested on sounding rocket flights out of Wallops Flight Facility (WFF) 

starting summer 2017
• Expose two candidate M2020 parachute designs to a supersonic inflation 

environment

1st stage Terrier burnout
L+5.2 s
Alt: 0.7 km

2nd stage Brant Ignition
L+8.0 s
Alt: 1.5 km

Payload Sep
L+104 s
Alt: ~50 km
Mach: 1.8

Atlantic Ocean

~60 -100  km 

2nd stage Brant burnout
L+35.5 s
Alt: 16.7 km
Mach: 3.2

Splashdown
L + ~30 min

Nosecone 
Jettison
Alt: 3 km

Mortar Fire
L+160-170 s
Alt: 39-45 km
q∞: 360-820 Pa
Mach: 1.65-1.9

Line Stretch
MF+~1 s
q∞: 400-930 Pa
Mach: 1.68

Peak Load
MF+~2 s
q∞: 400-900 Pa
Mach: 1.64
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