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Introduction & Background

• ASCoT is the NASA Analogy Software Cost Tool 

– ASCoT has been under development for 3 years based on 10 years of 
research

– The purpose of ASCoT is to

• Supplement current estimation capabilities

• Be effective in the very  early lifecycle when our knowledge is fuzzy

– uses high level systems information (Symbolic Data)

• Be usable by Cost Estimators, Software Engineers and Systems 
Engineers

– Methodology handles

• small sample sizes and noisy data

– Previous talks and papers described the research approach and activities

• ICEAA  2014, 2015

• NASA Cost Symposium 2014, 2015, 2016

• IEEE Aerospace 2016, 2017, 2018 (forthcoming)

• Numerous research publications in IEEE Software, lead by Dr. Tim 
Menzies et.al.
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Reminder: What We Learned So Far

• There are a variety of models whose performance are hard to 
distinguish (given currently available data) but some models are 
better than others

• If one has sufficient data to run COCOMO or a comparable 
parametric model then the best model is the parametric model 

• When insufficient information exists then a model using only 
system parameters can be used to estimate software costs with 
‘acceptable’ reduction in accuracy.  The main weakness is the 
possibility of occasional very large estimation errors which the 
parametric model does not exhibit.

• Use MRE to supplement standard statistical evaluation metrics

• Use median over average when possible

• While a nearest neighbor method performs as well as clustering 
models based on MMRE, clustering handles outliers better and 
provides a structured model that supports cost analysis and not 
just prediction
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Major Changes to ASCoT

• Added Nearest Neighbor (KNN) and COCOMO II
• More and Improved Mission Data
• Improved Input Parameters

– Redefined mission type into two parameters destination and a new 
mission type parameter to improve specificity

– Removed lines of code 
• even as a categorical parameter it can be difficult for people to assess, 

especially those with limited software experience

– Removed Secondary Element 

• Changed Clustering algorithm
– Based on extensive analysis of four different clustering methods

• More extensive evaluation criteria
– MRE, cluster stability, effort variation 

• ASCoT almost runs on ONCE as a web-based tool !!
– 1 last problem
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“ASCoT” Key Estimation/Analysis Components
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• Cluster & Regression Analysis components listed rely on high level Mission 
Descriptors such as # of Instruments and Mission Type

• COCOMO II is a reproduction and uses traditional inputs
• Will be linked to Analogy Cluster Model in future release

Cluster Analysis

• Clustering

• Development 
Effort 
Estimate

Regression 
Analysis

• Linear 
Regression

• Development 
Cost Estimate

COCOMO II

• Verified 
Reproduction

• Cost/Effort

Knn Analysis

• Nearest 
Neighbor

• Development 
Effort and 
SLOC Estimate

Analogy 

NewNewMajor 
Update

Updated



Data Sources

• Where the data came from

– CADRe

– NASA 93 – Historical NASA data originally collected for ISS 
(1985-1990) and extended for NASA IV&V (2004-2007)

– Contributed Center level data

– NASA Software Inventory

– Project websites and other sources for system level 
information if not available in CADRe

7



Missions by Destination
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Earth Asteroids/Com Inner Outer

Van	Allen	Probe DS1 Mars	Odyssey GLL

OCO Stardust Genesis JUNO

SDO Deep	Impact MRO New	Horizons

SMAP OSIRIS	REX	 Maven Cassini

GPM	Core Dawn Messenger

NuStar NEAR Solar	Probe	Plus

GEMS Contour LRO

GLORY Grail

GOES-R LCROSS

GEOTAIL LADEE

EO1 Kepler

Aqua Stereo

GLAST MPF

NOAA-N-Prime MER

NPP MSL

LDCM Phoenix

RHESSI Insight

TIMED

IRIS

MMS

HST

GRO

WISE

Total of 51 missions with data 
• 47 can be used in at least 1 

of the estimation models

Missions by Destination
• Earth – 23
• Asteroids/Comets – 7
• Inner Planets– 17
• Outer Planets - 4

New Missions Added:
• LADEE
• MMS
• Solar Probe Plus



Data Summary – Key Metrics

• Effort, Lines of Code and Productivity by Destination

• Number of Deployable and Instruments by Destination

9

1000 Number	of	Deployables	and	Instruments	by	Mission	Type

Destination

Median Range Median Range

Astreroids/Comet 3 2-5 1 0-3

Earth 3 1-10 2 0-8

Inner 4 3-10 2 0-10

Outer 10 7-12 3 0-8

DeployableInstrument



Improved Input Parameters

• Original Mission-Type parameter combined type of Mission Type with Destination
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Changed Clustering Algorithm

• ASCoT Beta used spectral clustering to derive the clusters 

• Conducted extensive analysis to verify this was indeed the 
best method 
– Spectral Clustering

– K-Means

– Hierarchical Clustering

– PCA- Principle Components

• The methods were examined for 
– cluster membership stability

– minimum within-cluster range

– Effort estimation error based on leave-one-out MRE 
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Model MRE Performance
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MRE Comparison Based on Test Cases

ASCoT 

Prototype ASCoT Beta ASCoT

1 0% 1% 2%

2 1% 3% 3%

3 3% 3% 7%

4 4% 10% 8%

5 4% 22% 15%

6 35% 23% 27%

7 45% 29% 32%

8 79% 35% 35%

9 101% 37% 37%

10 102% 51% 51%

11 192% 54% 54%

12 506% 175% 107%

Median 

MRE 40% 26% 30%

Average 

MRE 89% 37% 32%

Model Estimation Error, based on MRE, shows dropping SLOC as 
an input did not reduce estimation accuracy
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Expanded Model Evaluation Criteria



By gradually increasing the granularity of our clusters, while maintaining 
robustness to avoid overfitting, we were able to find logical separation 
between groupings of missions

Increasing granularity

A
ll 

m
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o

n
s

Missions

Rovers

Missions

Large 
Outer 

Planetary

Rovers

Planetary

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Planetary

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Planetary 1

Large Outer 
Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Landers

Planetary 2

Planetary 2

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Planetary 1

Clustering Analysis
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1 2 3 4 5 6 7

Small 
Earth

Very 
Large 
Outer 

PlanetsLanders

Rovers

Large 
Earth

Small 
Asteroid/C
omets and 

Inner 
Planets

Large     
Non-Earth

Ef
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rt

Cluster 

Reduced Cluster Effort Variation
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Cluster Parameter Summary
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Cluster
Mission	Cost

Median	

Mission	Cost

Range	

Software	

Inheritance
Destination

Mission	

Type

flight	Computer		

Redundancy

Number	of	

Instruments

Number	of	

Deployabes

Development	

Work	Months

Median

Development	

Work	Months

Range

1 $321M $170M	-	$500M High-Very	High Earth Orbiter Single	String 1	to	4 0	to	4 492 230	to	870

2
$824M $420M	-	$1,250M Medium	to	High

Earth	&	Inner	

Planets Orbter

Dual	String	-	

Cold	backup 2	to	6 2	to	8 603 340	to	790

3
$292M $220M	-	$550M Medium

Asteroid/Comets	

&	Inner	Planets

Orbiter/	

Flyby

Dual	String	-	

Cold	backup 2	to	7 0	to	3 525 450	to	1040

4
$548M $630M	-	$820M High-Very	High

Inner	Planet	

(Mars) Lander

Dual	String	-	

Warm	backup 4	to	5 2	to	3 728 630	to	820

5

$696M $550M	-	$850M High-Very	High

Inner/Outer	

Planets

&	

Asteroids/Comet

Orbiter/	

Flyby

Dual	String	-	

Cold	backup 3	to	9 0	to	3 641 400	to	690

6
$1,123M $420M	-	$2,600M None-Low

Inner	Planet	

(Mars) Rover

Dual	String	-	

Warm	backup 3	to	10 6	to	10 1735 1000	to	1890

7
$2680M $2,300M	-	$3,000M None-Low Outer	Planets

Orbiter/	

Flyby

Dual	String	-	

Warm	backup 11	to	12 4	to	8 978 650	to	1300



NASA Mission Clustering is More Logical  
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Mission Effort Destination Type Cluster

GEMS 100 Earth Observatory 1

GLORY 133 Earth Orbiter 1

GPM	Core 1043 Earth Orbiter 1

NuStar 493 Earth Observatory 1

OCO 492 Earth Orbiter 1

WISE 233 Earth Observatory 1

Grail 868 Inner	(Lunar) Orbiter 1

LADEE 492 Inner	(Lunar) Orbiter 1

GOES-R 584 Earth Orbiter 2

GRO 492 Earth Observatory 2

MMS 662 Earth Orbiter 2

SDO 1190 Earth Observatory 2

SMAP 789 Earth Orbiter 2

Van	Allen	

Probe

295.6 Earth Orbiter 2

Genesis 637 Inner	(L1) Orbiter 2

Mars	Odyssey 336 Inner Orbiter 2

Solar	Probe	

Plus

621 Inner	(Solar) Orbiter 2

Stereo 571.6 Inner Observatory 2

Mission Effort Destinatio

n

Type Cluster

Timed 504 Earth Orbiter 3
Kepler 446 Inner Observatory 3
LRO 964 Inner Orbiter 3
Messenger 384.4 Inner Orbiter 3
Contour 307 Ast/Com Orbiter 3
Deep	Impact 1047.9 Ast/Com Orbiter 3
DS1 1042.8 Ast/Com Orbiter 3
Stardust 546 Ast/Com Orbiter 3
Insight 822 Inner Lander 4
Phoenix 634 Inner Lander 4
Maven 694 Inner Orbiter 5
MRO 691 Inner Orbiter 5
Dawn 691.43 Ast/Com Orbiter 5
OSIRIS	REX 401.01 Ast/Com Orbiter 5
JUNO 346 Outer Orbiter 5
New	Horizons 591.1 Outer Orbiter 5
MER 1735.4 Inner Rover 6
MPF 1080 Inner Rover 6
MSL 1888 Inner Rover 6
Cassini 1307 Outer Orbiter 7
GLL 648 Outer Orbiter 7
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Reduced Cluster Parameter Variation
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ASCoT Web Model :  
Analogy Cluster Model Main View

Left Hand Navigation 
Menu with Analysis 

Types

Model Inputs

Estimate
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Top graph compares 
the User Inputs vs 
Cluster members

1 Line per Mission in 
the Cluster plus 1 

Line for User Inputs

Where lines overlap, 
User Inputs align with 
values for Missions in 

the Cluster

Other reference 
Cluster compared to 
User Inputs are less 

aligned

Cluster Effort Months 
Result (Median)ASCoT Web Model:  

Analogy Cluster Model Parameter View
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ASCoT Web Model:  
KNN Model Main View

Results based on 
Euclidian distance

Model Inputs

Estimate



ASCoT Web Model:
Cost Regression View
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Regressions shown for “All Missions”, 
“Planetary Missions”, and “Earth 

Orbiting Missions”

Additional Regression includes 
Number of Instruments as input

X-Axis = Number of Instruments
Y-Axis = Spacecraft Cost

Z-Axis = Software Dev Cost

User Input of Total 
Spacecraft Cost
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ASCoT Web Model:
COCOMO II Model Main View

Standard COCOMO inputs 
with 

estimated effort and cost  S-Curves  

In next release will link analogy 
models as front-end to COCOMO II 
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ASCoT Break Out Session

mini-tutorial 

and 

more on what is under the hood
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Back Up



Data Items Overview
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ASCoT Publications & Presentations

2. IEEE Aerospace

– Improving and Expanding NASA Software Estimation 
Methods, 2016 Aerospace Conference, Big Sky, Mt., March 2016. 

– NASA Analogy Software Cost Model:  A Web-Based Cost Analysis 
Tool, , 2017 Aerospace Conference, Big Sky, Mt., March 2017. 

2. Automation in Software Engineering (ASE)

– Data Mining Methods and Cost Estimation Models: Why is it so 
hard to infuse new ideas? ,  Automation in Software Engineering 
2015,  Norman, Nebraska, Nov. 2015. 

1. International Cost Estimation and Analysis Association 
(ICEAA) 

− NASA Software Cost Estimation Model: An Analogy Based 
Estimation Method,  2015 International Cost Estimation and 
Analysis Association (ICEAA) Professional Development & 
Training Workshop,  San Diego California, June 2015

− A Next Generation Software Cost Model, 2014 International Cost 
Estimation and Analysis Association (ICEAA) Professional 
Development & Training Workshop, Denver Colorado , June 

2014.

1. NASA Cost Symposium

– ASCoT R2: A web-based model of the NASA Analogy 
Software Costing Tool, Goodbye Excel”, 2016 NASA Cost 
Symposium,  NASA Glen Research Center, August. 2016. J. 
Hihn and J. Johnson

– NASA Software Cost Estimation Model: An Analogy Based 
Estimation Method. 2015 NASA Cost Symposium,  NASA 
Ames Research Center, August 2015.  J. Hihn and J. Johnson. 

– A Next Generation Software Cost Model: A look under the 
Hood.   2014  NASA Cost Symposium, NASA Langley 
Research Center, August 2014.    J. Hihn and J. Johnson. 

2. COCOMO Workshop

– NASA Analogy Software Costing Tool-ASCoT, 31tst 
International Forum on COCOMO and System/Software Cost 
Modeling,USC,  October  2016.  J. Hihn & M. Saing

– Just How Good is COCOMO and Parametric Estimation?, , 
29th International Forum on COCOMO and System/Software 
Cost Modeling, USC, October  2014.  Hihn et al.
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Publications: Conference

Presentations

Publications: Journal
1. Empirical Software Engineering 

– Negative results for software effort 
Estimation, Empirical Software Engineering,  
Nov 2016. Menzies, Yang, Mathew, Boehm, 
Hihn
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