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Introduction

The Jovian system is a fascinating world, with missions planned in the near future to
visit two of Jupiter largest moons: Europa and Ganymede
A spacecraft on a cycler trajectory uses gravity assists to return to the starting body
after a flight time commensurate with the celestial bodies’ synodic period
The non-propulsive repeatability of these trajectories makes them of interest to
human and robotic exploration applications.
* Cycler trajectories could be used for sending crew and cargo to/from Earth and
Mars
* Inter-moon cycler trajectories for robotic tour missions could, in an ideal
environment, flyby several moons for an indefinite amount of time

In the past cycler trajectories have been focused on gravity assist from two planets/
moons. We discuss triple cyclers, trajectories flying by three planets/moons




lo, Europa, Ganymede System

Triple cycler trajectories: spacecraft repeatedly flies by three moons

 Ganymede, Europa, and lo are in 1:2:4 orbital resonance
* Synodic period is time it takes to repeat a given angular alignment of the three
bodies: T.,, = 7.05 days

syn
e After one synodic period, all the moons return to their initial relative configuration;

however, an angular shift in their inertial location of 5.2° occurs
lo
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Understanding Triple Cyclers in Jovian System N@‘

Triple cycler trajectories: spacecraft repeatedly flies by three moons

 Ganymede, Europa, and lo are in 1:2:4 orbital resonance

* Synodic period is time it takes to repeat a given angular alignment of the three
bodies: T, = 7.05 days

e After one synodic period, all the moons return to their initial relative configuration;

however, an angular shift in their inertial location of 5.2° occurs

* Cycle: Portion of trajectory with flight time equal to an integer number of T, that
starts and ends at the same body, and flies by at least once through each of the
bodies (lo, Europa, Ganymede)

* A cycler trajectory is one that completes one or more cycles.

* Categorize into families based on integer number of synodic periods in a cycle, and
the itinerary of flybys.

 Example:

* 1 synodic: EGIE, EIGIE,
* 2 synodic: EGIE, EIGIE, GEIIEIG, IEIGIEI
* 3 synodic: EGIE, EIGIE, GEIIEIG, IEIGIEI, EIGIGEIGE



Tisserand Graph
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Triple cycler search region
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Example Sequence Scenario: EGIGE
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The plot indicates possible gravity assist connections from a purely energy
perspective (phase free)
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') Strategy to Find Triple Cycler Solutions ¥

« Possible sequences based on number of encounters: | s(n) =3""t —2" +1
Number of encounters Sample Sequence Possible Sequences
3 EIGE, EGIE 2
4 EEIGE, EEGIE, EIEGE, ... 12
5 EIGGIE, EEGIGE, EIEEGE, EIIGEE, ... 50
6 EEIGIGE, EGEGGIE, EIIEGEE, EEIIEGE, ... 180

 The number of possibilities increases very quickly as number of encounter bodies
increases

Need good initial guess strategy to reduce search space

1. Reduce the large phase-space search through a preliminary analysis based on two-
body dynamics, where geometries that can potentially allow triple cycler solutions
are selected.

2. Potential geometry includes a sequence of close flyby encounters, and an
approximate time of flight between them

3. Patched conic gravity model and Lambert’s problem is solved to determine the
legs connecting consecutive encounters

4. Optimize using Monte Carlo



3 - Conic Search Initial Guess Tool

Outbound Departure

1. Semi-major axis — === inbound Departure
. . . . . . lo
Period is integer multiple of synodic period

— Europa
—— Ganymede

Npeyli = nsynTsyn

2. Eccentricity e
Bounded by conic intersecting A e N N
three moons N

Tpomin = TeTup and  7p... = ajo
Tanin = OGan and Tamaw = OO
3. Argument of periapsis
For given departure phase there are 2 options:
w, (outbound) and w, (inbound)
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Outbound Departure

3 independent variables are looped over all possibilities e Inbound Departure

lo

Europa
Ganymede

Search if the three flyby bodies are within a
specified distance from the spacecraft when -
it crosses each satellite’s orbit. !

For each synodic period cycle:
- Sequence of close flyby encounters
- Approximate time of flight between encounters

Potential sequence of flybys is predetermined, greatly reducing the exhaustive
search that would be needed otherwise




Initial Guess to Lambert

e Using initial guess for TOF: pair of flybys is connected via Lambert arcs using a zero-
sphere-of-influence patched conic gravity model, and allowing for a velocity impulse
(AV) if needed at periapsis of the flyby.

 The number of revs is predefined by the time of flight between encounter bodies,
and the type of arc is chosen so as to minimize the AV at the flyby

* Input: ng,, flyby sequence, tof between encounters

* Output: AV, r,

* Monte Carlo Lambert Optimization (find min AV)

O
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EIGE Sequence Example
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Initial Guess to Lambert

e Using initial guess for TOF: pair of flybys is connected via Lambert arcs using a zero-
sphere-of-influence patched conic gravity model, and allowing for a velocity impulse
(AV) if needed at periapsis of the flyby.

 The number of revs is predefined by the time of flight between encounter bodies,
and the type of arc is chosen so as to minimize the AV at the flyby

* Input: ng,, flyby sequence, tof between encounters

* Output: AV, r,

* Monte Carlo Lambert Optimization (find min AV)
EIGE Sequence Example

O . O

tof, tof tofg g

* Fixed parameters: Sequence and T ., = tofy, + tof _+ tofg ¢
* 3 parameters to vary: t,, tofg, tof, 5 and tof  solved for from fixed period

n parameters to optimize for n sequence cycle
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Flyby Body | Time of Flight | Excess Speed | Flyby Altitude | AV
(days) (km/s) (km) (m/s)
Europa - 12.27 9,260 1.8
Ganymede 2.03 7.29 69,990 0.1
Io 0.85 15.77 3,176 4.4
Europa 0.66 12.15 2,259 0.6
Io 2.87 15.86 494 0.0
Europa 0.65 - - -
Total 7.06 - - | 6.90 |
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High-Fidelity Solutions

* Inreal ephemeris, the repeatability of the solution is not exact due to the fact
that the relative geometry of the encounter bodies changes over time
* Maintenance of the cycler will be required by implementing an adaptive
algorithm that can compute a new cycle at each repeat period
 Two level approach
1. Lambert in the real ephemeris
2. Full optimization in a high-fidelity gravity environment

N Eroms | | | | | | | 7 e 1 Synodic Period EIGE Sequence
— Canymede * Ideal model:
sooovol | # & start | s AV=0m/s
¢ ¢ End ( * Real ephemeris:
= ) ’ 10 repeat cycles: AV =30 m/s
™ soo000] 0—-*"" , * Increasing AV after that
e Optimization high-fidelity:
o 777]] ’  Ballistic for 2 cycles
“1500000 , * Large AV to maintain
afterwards

—2000000-1500000—-1000000 —500000 0 500000 1000000 1500000
X (km)



Conclusion

Triple cyclers around Jovian moons Ganymede, Europa, and lo are possible due to
1:2:4 orbital resonance

Initial guess strategy is important to reduce the large phase-space search
* Approximate a desired cycler trajectory with a two-body
* Check at what phase the encounter bodies intersect the orbit
* Families are classified by
1. Integer number of synodic periods in one cycle
2. Integer number of revolutions around Jupiter

Once a good initial guess is known, Lambert is used along with a zero-radius sphere-
of-influence patched conic gravity model
* Due to fast computation time of solving Lambert’s problem, a Monte Carlo
analysis allows for fast optimization to reduce any AV discontinuities

Future work:
e Jupiter-centered energy remains approximately constant
* |nitial guess strategy can be expanded to allow conic orbits that do not
intersect three flyby bodies and then patch consecutive conics together
e Allow cyclers with more complex itineraries, sequences that cover a wider
range of energy levels



