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IntroducBon	

•  The	Jovian	system	is	a	fascina;ng	world,	with	missions	planned	in	the	near	future	to	
visit	two	of	Jupiter	largest	moons:	Europa	and	Ganymede	

•  A	spacecraQ	on	a	cycler	trajectory	uses	gravity	assists	to	return	to	the	star/ng	body	
aQer	a	flight	;me	commensurate	with	the	celes;al	bodies’	synodic	period	

•  The	non-propulsive	repeatability	of	these	trajectories	makes	them	of	interest	to	
human	and	robo;c	explora;on	applica;ons.		
•  Cycler	trajectories	could	be	used	for	sending	crew	and	cargo	to/from	Earth	and	

Mars		
•  Inter-moon	cycler	trajectories	for	robo;c	tour	missions	could,	in	an	ideal	

environment,	flyby	several	moons	for	an	indefinite	amount	of	/me		

In	the	past	cycler	trajectories	have	been	focused	on	gravity	assist	from	two	planets/
moons.	We	discuss	triple	cyclers,	trajectories	flying	by	three	planets/moons	
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Io,	Europa,	Ganymede	System	

Triple	cycler	trajectories:	spacecraQ	repeatedly	flies	by	three	moons		

•  Ganymede,	Europa,	and	Io	are	in	1:2:4	orbital	resonance	
•  Synodic	period	is	;me	it	takes	to	repeat	a	given	angular	alignment	of	the	three	

bodies:	Tsyn	=	7.05	days	
•  AQer	one	synodic	period,	all	the	moons	return	to	their	ini;al	rela;ve	configura;on;	

however,	an	angular	shiB	in	their	iner;al	loca;on	of	5.2°	occurs		

Io	
Europa	
Ganymede	
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Understanding	Triple	Cyclers	in	Jovian	System	

Triple	cycler	trajectories:	spacecraQ	repeatedly	flies	by	three	moons		

•  Ganymede,	Europa,	and	Io	are	in	1:2:4	orbital	resonance	
•  Synodic	period	is	;me	it	takes	to	repeat	a	given	angular	alignment	of	the	three	

bodies:	Tsyn	=	7.05	days	
•  AQer	one	synodic	period,	all	the	moons	return	to	their	ini;al	rela;ve	configura;on;	

however,	an	angular	shiB	in	their	iner;al	loca;on	of	5.2°	occurs		

•  Cycle:	Por;on	of	trajectory	with	flight	;me	equal	to	an	integer	number	of	Tsyn,	that	
starts	and	ends	at	the	same	body,	and	flies	by	at	least	once	through	each	of	the	
bodies	(Io,	Europa,	Ganymede)	

•  A	cycler	trajectory	is	one	that	completes	one	or	more	cycles.		
•  Categorize	into	families	based	on	integer	number	of	synodic	periods	in	a	cycle,	and	

the	i;nerary	of	flybys.		
•  Example:		

•  1	synodic:	EGIE,	EIGIE,		
•  2	synodic:	EGIE,	EIGIE,	GEIIEIG,	IEIGIEI	
•  3	synodic:	EGIE,	EIGIE,	GEIIEIG,	IEIGIEI,	EIGIGEIGE	
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Tisserand	Graph	
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Strategy	to	Find	Triple	Cycler	SoluBons	

1.   Reduce	the	large	phase-space	search	through	a	preliminary	analysis	based	on	two-
body	dynamics,	where	geometries	that	can	poten;ally	allow	triple	cycler	solu;ons	
are	selected.		

2.  Poten;al	geometry	includes	a	sequence	of	close	flyby	encounters,	and	an	
approximate	/me	of	flight	between	them		

3.  Patched	conic	gravity	model	and	Lambert’s	problem	is	solved	to	determine	the	
legs	connec;ng	consecu;ve	encounters		

4.  Op;mize	using	Monte	Carlo	

Because the encounter body sequence of a given cycler always repeats, it does not matter which
body is assigned the first flyby. For example, an EGIE cycle is equivalent to a GIEG cycle. Without
loss of generality, we choose Europa as the first flyby body for any cycler and there is no need to
repeat the search beginning at the other two satellites, reducing even further the search space. The
number of possible sequences for n encounter bodies in a cycle is dictated by11, 12

s(n) = 3n�1 � 2n + 1 (2)

Possible combinations of cycler sequences are shown in Table 2 for up to six encounter bodies
within a cycle. Note how quickly the possible sequences grow, reaching close to 20,000 options
when ten flyby bodies are considered within a cycle. This rapid growth emphasizes the importance
of a good initial guess tool that does not rely on thousands of possible sequence combinations.

Table 2. Possible cycler flyby sequences

Number of encounters Sample Sequence Possible Sequences
3 EIGE, EGIE 2
4 EEIGE, EEGIE, EIEGE, ... 12
5 EIGGIE, EEGIGE, EIEEGE, EIIGEE, ... 50
6 EEIGIGE, EGEGGIE, EIIEGEE, EEIIEGE, ... 180

Lambert Search

With the ephemeris model, the positions of each body are known for any desired time. The initial
guess procedure provides a specific sequence along with the times of encounters of each body. Once
both the sequence and the flyby times are defined, every pair of flybys is connected via Lambert arcs
using a zero-sphere-of-influence patched conic gravity model, and allowing for a velocity impulse
(�V ) if needed at periapsis of the flyby. At this step, subsurface flybys may exist, keeping in mind
all physical constraints will be added in the subsequent optimization procedure. Lambert arcs may
be of the fast/slow type, and several revs are possible.13 The number of revs in a specific arc is
predefined by the time of flight between encounter bodies, and the type of arc is chosen so as to
minimize the �V at the flyby.

Flyby Evaluation After solving Lambert’s problem for adjacent legs, powered hyperbolic flybys
are computed by solving for flyby altitudes. Tangential periapsis maneuvers are calculated at each
encounter to account for the v1 mis-match.14 Such a maneuver is often sub-optimal; however, the
guess suffices for filtering poor solutions via a minimum �V constraint evaluation. The transfer
angle is:

� = hv�
1, v+

1i (3)

The periapsis radius r
p

is solved iteratively via the following equation⇤
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⇤This allows subsurface solutions, but those are handled by a minimum altitude constraint.
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Need	good	ini/al	guess	strategy	to	reduce	search	space		
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Conic	Search	IniBal	Guess	Tool	

ωi 

θ(ti) 

Outbound Departure  
Inbound Departure 

Io 
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Ganymede 

•  Approximate	cycle	solu;on	by	conic	orbit	that	intersects	all	three	flyby	bodies	
	

1.   Semi-major	axis	
						Period	is	integer	mul;ple	of	synodic	period	
	
2.			Eccentricity	
							Bounded	by	conic	intersec;ng		
							three	moons	

	
	

3.   Argument	of	periapsis	
				For	given	departure	phase	there	are	2	op;ons:	
																ω1	(outbound)	and	ω2	(inbound)	

METHODOLOGY

The Galilean moons have a fast revolution rate around Jupiter. For example, Io takes only 1.75
days to complete one orbit. Therefore, searching for trajectories in this system is time sensitive,
since within a couple of hours Io might have moved significantly away from the planned spacecraft
trajectory. Due to this sensitivity, a systematic initial guess tool is necessary to quickly search for
possible cycler trajectories. Once a potential feasible solution is found, a patched conic gravity
model is adopted, and Lambert’s problem is solved to determine if the solution is near-ballistic with
altitude flybys above the encounter body radius and below a maximum threshold.

Conic Initial Guess Tool

The initial guess search involves approximating a desired trajectory by a two-body conic, classi-
fied by three geometrical parameters: period, eccentricity, and orientation with respect to an inertial
frame. The period is an integer multiple of the synodic period, the eccentricity is bounded to ensure
the conic intersects all three moon orbits, and the orientation is chosen based on the location of one
of the moons at the chosen departure time. The conic trajectory is searched to determine if the three
flyby bodies are within a specified distance from the spacecraft when it crosses each moon’s orbit.
This requirement greatly reduces the search complexity for cyclers by focusing on trajectories that
range R

Jup

 r
p

 a
Io

and r
a

� a
Gan

, an area outlined in the box in the Tisserand plot in Figure
1.

A cycle can repeat after n
syn

synodic periods, where n
syn

is a positive integer. The number of
spacecraft revs for a cycle with a period n

syn

T
syn

is driven by the constraint that the orbit must
intersect all three flyby bodies in each revolution around Jupiter⇤. Table 1 shows the possible orbit
options for a cycler with synodic period ranging from 1 to 4. For example, for a 1 synodic period
cycler, the period of the spacecraft can be such that it orbits Jupiter once or twice in that time period.
The greyed out boxes are infeasible options since the corresponding orbits do not intersect all three
bodies, and unnumbered boxes represent options that are repeated, e.g. 1:1 is equivalent to 2:2.

Table 1. Allowed search space for spacecraft revolutions around Jupiter for each synodic period
XXXXXXXXXXXsyn. per.

s/c revs 1 2 3 4 5 6 7 8 9

1 1:1 1:2
2 2:1 – 2:3 – 2:5
3 3:1 3:2 – 3:4 3:5 – 3:7
4 4:1 – 4:3 – 4:5 – 4:7 – 4:9

The initial guess search method is outlined below:

1. The semi-major axis a
i

, directly proportional to the period T
i

= 2⇡
q

a3
i

/µ, is chosen from

n
rev

T
i

= n
syn

T
syn

(1)

⇤Note that cyclers may exist which do not conform to the assumption that the orbit must intersect all three flyby
bodies, e.g. the initial guess orbit might only intersect the orbits of Io and Europa, however an energy boost from either
one of these bodies could allow the trajectory to reach Ganymede. These types of trajectories will be investigated in
future work.
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where n
rev

and n
syn

are chosen from Table 1.

2. The valid eccentricity e
i

range is constrained by the maximum and minimum perijove and
apojove values, such that an orbit intersects all three flyby bodies. For this system,
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are the semi-major axis of Io and
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3. Argument of Periapsis: !
i

For a given departure phase ✓(t
i

) from a specific flyby body, where ✓(t
i

) 2 [0, 2⇡], and a
chosen a

i

and e
i

, there are two possible orbit geometry configurations. Figure 2 shows two
possible solutions for a departure from Europa at a phase ✓

i

(equivalent to a time t
i

), with the
first option departing on an outbound flyby and the second departing on an inbound flyby.

ωi 

θ(ti) 

Outbound Departure  
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Europa 
Ganymede 

Figure 2. Possible orbit geometry configurations for departure flyby at Europa for a
chosen ai and ei.

The three independent variables are looped over n
rev

times, to determine if the three flyby bod-
ies are within a specified distance from the spacecraft when it crosses each satellite’s orbit. Each
potential solution includes a sequence of close flyby encounters, and an approximate time of flight
between them. The beauty of the initial guess algorithm is that a potential sequence of flybys is
predetermined, greatly reducing the exhaustive search that would be needed otherwise due to the
exponential growth of combinatory possibilities as the number of considered encounters increases.

5
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Conic	Search	IniBal	Guess	Tool	

ωi 

θ(ti) 

Outbound Departure  
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Ganymede 

•  Approximate	cycle	solu;on	by	conic	orbit	that	intersects	all	three	flyby	bodies	

•  3	independent	variables	are	looped	over	all	possibili;es	

•  Search	if	the	three	flyby	bodies	are	within	a																																																																
specified	distance	from	the	spacecraQ	when																																																																													
it	crosses	each	satellite’s	orbit.		

•  For	each	synodic	period	cycle:	
-	Sequence	of	close	flyby	encounters	
-	Approximate	/me	of	flight	between	encounters	

Poten;al	sequence	of	flybys	is	predetermined,	greatly	reducing	the	exhaus/ve	
search	that	would	be	needed	otherwise	
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IniBal	Guess	to	Lambert	

•  Using	ini;al	guess	for	TOF:	pair	of	flybys	is	connected	via	Lambert	arcs	using	a	zero-
sphere-of-influence	patched	conic	gravity	model,	and	allowing	for	a	velocity	impulse	
(∆V)	if	needed	at	periapsis	of	the	flyby.		
•  The	number	of	revs	is	predefined	by	the	;me	of	flight	between	encounter	bodies,	

and	the	type	of	arc	is	chosen	so	as	to	minimize	the	∆V	at	the	flyby	
•  Input:	nsyn,	flyby	sequence,	tof	between	encounters	
•  Output:	∆V,	rp	

•  Monte	Carlo	Lambert	Op/miza/on	(find	min	∆V)	
EIGE	Sequence	Example	

tofE-I	 tofI-G	 tofG-E	tdep	
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IniBal	Guess	to	Lambert	

•  Using	ini;al	guess	for	TOF:	pair	of	flybys	is	connected	via	Lambert	arcs	using	a	zero-
sphere-of-influence	patched	conic	gravity	model,	and	allowing	for	a	velocity	impulse	
(∆V)	if	needed	at	periapsis	of	the	flyby.		
•  The	number	of	revs	is	predefined	by	the	;me	of	flight	between	encounter	bodies,	

and	the	type	of	arc	is	chosen	so	as	to	minimize	the	∆V	at	the	flyby	
•  Input:	nsyn,	flyby	sequence,	tof	between	encounters	
•  Output:	∆V,	rp	

•  Monte	Carlo	Lambert	Op/miza/on	(find	min	∆V)	
EIGE	Sequence	Example	

tofE-I	 tofI-G	 tofG-E	tdep	
•  Fixed	parameters:	Sequence	and	Tcycle	=	tofE-I	+	tofI-G	+	tofG-E				
•  3	parameters	to	vary:	tdep,	tofE-I,	tofI-G		and	tofG-E	solved	for	from	fixed	period	

n	parameters	to	op/mize	for	n	sequence	cycle	



IntroducBon	

AAS	17-608		 8	

One	Synodic	Period:	EGIEIE	Cycle	

making them hard to fly from a navigation point of view. Figure 3(c) shows the full cycler solution,
propagated for 25 synodic periods, showing how in an ideal environment, the trajectory would fly
by each of the satellites indefinitely.

(a) Trajectory propagated for 1 repeat cycle (b) Spacecraft range from Jupiter with flyby locations

(c) Trajectory propagated for 25 repeat cycles

Figure 3. One synodic period cycler with sequence EGIEIE departing on 03-October-2020.

Table 3. Flyby summary for EGIEIE cycler departing on 03-October-2020

Flyby Body Time of Flight Excess Speed Flyby Altitude �V
(days) (km/s) (km) (m/s)

Europa – 12.27 9,260 1.8
Ganymede 2.03 7.29 69,990 0.1

Io 0.85 15.77 3,176 4.4
Europa 0.66 12.15 2,259 0.6

Io 2.87 15.86 494 0.0
Europa 0.65 – – –
Total 7.06 – – 6.90

8
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Four	Synodic	Period:	EGGIE	Cycle	

Table 4. Flyby summary for EGGIE cycler departing on 29-September-2020

Flyby Body Time of Flight Excess Speed Flyby Altitude �V
(days) (km/s) (km) (m/s)

Europa – 9.12 1,444 0.00
Ganymede 1.59 7.07 2,155 0.60
Ganymede 8.60 7.07 6,263 0.00

Io 7.34 8.38 653 0.10
Europa 10.69 – – –
Total 28.22 – – 0.70

plot in Figure 4(d), where the area traversed is over a small range of r
p

and r
a

.

HIGH-FIDELITY SOLUTIONS

In an ideal environment, triple cycler solutions will repeat for an infinite amount of cycles. How-
ever, in the real ephemeris, the repeatability of the solution is not exact due to the fact that the
relative geometry of the encounter bodies changes over time. Therefore, it is expected that in the
transition from the ideal to the real model, maintenance of the cycler will be required by implement-
ing an adaptive algorithm that can compute a new cycle at each repeat period. A two-level approach
is implemented: first, the ideal solution is solved via Lambert in the real ephemeris, after which a
full optimization in a high-fidelity gravity environment is solved. The ballistic repeatability of the
high-fidelity solution, in general, will only last for a few cycles.

To begin the transition into the real model, the ideal solution is solved in a zero-radius sphere-of-
influence patched conic gravity model via Lambert in the real ephemeris for one cycle. In general,
during this step, the one cycle solution will maintain the same geometry and ballistic properties as
the cycle in the ideal environment. However, when adding more cycles to the sequence, �V dis-
continuities appear, and, the geometry of the cycler begins to get distorted. This can be remedied by
allowing the times of flight between each encounter to vary via the Monte Carlo Lambert search at
every synodic period; however, the non-constant precession of the encounter bodies will eventually
make the cycler break down.

Figure 5 shows a one synodic, one rev cycler with sequence EIGE computed in real ephemeris
using Lambert arcs. The flybys occur at an altitude of 2,817 km at Io, 13,180 km at Ganymede,
and 470 km at Europa. The equivalent cycler in the ideal model is ballistic, and, even though in
the real ephemeris the first cycle of the solution is optimized to be ballistic, after 10 repeat cycles,
the �V increases to almost 30 m/s. Although hardly noticeable from Figure 5, the geometry of
the cycler also changes. Conversion into a high-fidelity gravity environment is implemented for this
example, and the solution remains ballistic for two cycles, after which large impulses are required to
maintain the cycler. Although not investigated here, the large impulses could be avoided or reduced
by transitioning from one cycler geometry to another after some number of repeat periods.

CONCLUSIONS

Triple cyclers around the Jovian moons Io, Europa, and Ganymede are investigated. The 1:2:4
orbital resonance among these moons allows for trajectories that can periodically fly by the three
bodies, and, in an ideal world, can repeat indefinitely, making them of potential use for robotic

10
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High-Fidelity	SoluBons	

•  In	real	ephemeris,	the	repeatability	of	the	solu;on	is	not	exact	due	to	the	fact	
that	the	rela;ve	geometry	of	the	encounter	bodies	changes	over	;me		

•  Maintenance	of	the	cycler	will	be	required	by	implemen;ng	an	adap;ve	
algorithm	that	can	compute	a	new	cycle	at	each	repeat	period		

•  Two	level	approach	
1.  Lambert	in	the	real	ephemeris		
2.  Full	op;miza;on	in	a	high-fidelity	gravity	environment	

•  1	Synodic	Period	EIGE	Sequence		
•  Ideal	model:		

•  ∆V	=	0	m/s	
•  Real	ephemeris:		

•  10	repeat	cycles:	∆V	=	30	m/s	
•  Increasing	∆V	aQer	that	

•  Op;miza;on	high-fidelity:		
•  Ballis;c	for	2	cycles	
•  Large	∆V	to	maintain	

aQerwards	
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Conclusion	

•  Triple	cyclers	around	Jovian	moons	Ganymede,	Europa,	and	Io	are	possible	due	to	
1:2:4	orbital	resonance	

•  Ini/al	guess	strategy	is	important	to	reduce	the	large	phase-space	search	
•  Approximate	a	desired	cycler	trajectory	with	a	two-body		
•  Check	at	what	phase	the	encounter	bodies	intersect	the	orbit		
•  Families	are	classified	by		

1.  Integer	number	of	synodic	periods	in	one	cycle	
2.  Integer	number	of	revolu;ons	around	Jupiter	

•  Once	a	good	ini;al	guess	is	known,	Lambert	is	used	along	with	a	zero-radius	sphere-
of-influence	patched	conic	gravity	model		
•  Due	to	fast	computa;on	;me	of	solving	Lambert’s	problem,	a	Monte	Carlo	

analysis	allows	for	fast	op/miza/on	to	reduce	any	∆V	discon;nui;es	
•  Future	work:	

•  Jupiter-centered	energy	remains	approximately	constant		
•  Ini;al	guess	strategy	can	be	expanded	to	allow	conic	orbits	that	do	not	

intersect	three	flyby	bodies	and	then	patch	consecu;ve	conics	together		
•  Allow	cyclers	with	more	complex	i;neraries,	sequences	that	cover	a	wider	

range	of	energy	levels		


