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Introduction

Growing interest in ciscular space missions
— Stepping stone for human deep space exploration
Two cislunar orbit types offer promising applications and are often
considered in cislunar missions:
— Near Rectilinear Halo Orbit (NRHO)
— Distant Retrograde Orbit (DRO)
NASA'’s Asteroid Redirect Robotic Mission (ARRM) concept takes
advantage of these orbits:
— Crewed mission for investigating the return boulder occurs in NRHO
— Returned boulder stored in DRO

How to systematically design efficient NRHO to DRO transfers ?

— crucial to minimize as much as possible the transfer delta-v due to large
masses involved (SEP modules, habitats...)

— no analytical solution because of strongly perturbed cislunar environment

The transfers shown here will rely on connecting effectively NRHO
departure arcs to DRO insertion arcs, via Earth and solar gravity
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ORBITS
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NRHO

 NRHOs are members of the lunar
Halo families with close approaches

over one of the lunar poles s o 5t
« 9:2resonant NRHO (L2, South) .
considered: . |
— 9 NRHO revs per 2 lunar months ~
— 6.6 days period % %
— 3250 km perilune radius E o
— ~75,000 km apolune radius
« NRHOs are good staging orbits for -jzo>\//5
space modules or habitats ° > 0 10
— favor both access from Earth and *0m) Y (ham) N x(g%of

polar surface access

« Slightly unstable orbit (<10 m/s per
year maintenance)

Lunar NRHO in Earth-Moon synodic
frame propagated for 1 period
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DRO

« Well-studied orbit which appears to
orbit the Moon in a retrograde 1o
motion (when viewed in a frame '
rotating with the Moon)

 Planar 70k-DRO considered

— Rotating x-axis crossing at
~70,000 km

— 13-14 days orbital period

— near 2:1 resonance with the Moon:
launch opportunities from Earth
every other revolution to access | | | l
that orbit i e ! o
» Highly stable with more than 150
years of lifetime without
maintenance

« |deal storage orbit for sample
return missions
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Lunar DRO in Earth-Moon synodic
frame propagated for 10 years
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INITIAL GUESS
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Initial Guess Structure

« NRHO to DRO transfers require significant inclination change

* Inclination changes are more efficient when performed far from the
orbiting body

« - take an indirect route: escape the Moon, move far away, and
come back

 |nitial guess split in 3 phases:

Full ephemeris forces

Full ephemeris forces
near the Moon

near the Moon
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Transfer in ideal Sun-Earth
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NRHO departure Moon-to-Moon transfer DRO insertion
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Moon-to-Moon Transfer Families

 When moving far away, solar perturbations become significant
« No analytical solutions are available

- Look up pre-computed database of families of Moon-to-Moon
transfers in the Sun-Earth CRTBP
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Characteristics of the "oi' Moon-to-Moon families (v.. o = 0.4 km/s): (a) final lunar relative
velocity magnitude vs solar phase angle (b) flight time vs solar phase angle
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Moon-to-Moon Transfer Candidates

« Long transfer solutions shadow Sun-Earth Distant Prograde Orbits
(DPOs) with apogees alternately leading and trailing the Earth in its
orbit about the Sun.
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Moon-to-Moon ‘oi’ solutions with small lunar relative
velocity on both ends, plotted in the Sun-Earth
rotating frame.
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Chosen Moon-to-Moon Transfer Type

Eoi Moon-to-Moon transfer is used to illustrate the methodology and
construct a full initial guess
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Selected Moon-to-Moon Eoi initial guess in: a) Earth-centered Sun-Earth rotating frame; b)
Earth-centered inertial frame. The Moon’s positions at the initial and final encounters are
shown by black and green circles, respectively. Dashed lines are the chopped-off ends of

the transfer that will be replaced by actual NRHO departure and DRO insertion trajectories.
]
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DRO Insertion

* Apply impulse and propagate backwards starting from the selected
DRO orbit

— Grid search on DV magnitude (~15-25 m/s typically), direction & location
— Guess DRO insertion time (~3-6 months typically)

« Keep solutions with similar lunar 5 X10° Mo?rr;tg}l(\a/lroon
approach conditions as Moon-to- al \
Moon transfer |
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(TOF =98.7 days, DV = 17 m/s).
Earth-Moon rotating frame
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NRHO departure

« Similar idea as DRO insertion: Apply impulse and propagate forward
starting from the selected NRHO orbit
— Grid search on DV magnitude (~5-10 m/s typically), tangent direction only
— Guess NRHO departure time (~1-2 months typically)
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Example of NRHO departure trajectory
(TOF = 45 days, DV =9 m/s).
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OPTIMIZATION & RESULTS

13 © 2017 California Institute of Technology. Government sponsorship acknowledged.



Full initial guess & optimization

« Resulting initial guess has discontinuities

« To enforce continuity and minimize delta-v, a local optimizer is used
to produce the final solution

« Endpoints (states and times) of the transfer are fixed to ensure the
desired orbits are used

« Multiple shooting method:
like the initial guess, "
complete trajectory is broken
down into different legs

« Multiple impulsive
maneuvers are distributed on
each leg and can be varied
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by the optimizer
« SNOPT used to solve the T e Y g
resulting discrete problem Complete initial guess of the NRHO to DRO

transfer (Earth-centered inertial frame).
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Optimized NRHO to DRO transfer

« After Orion rendezvous, the ARRM x10°

spacecraft transfers to a stable planar DRO  °
 Total AV = 56 m/s (NRO escape =5 m/s, o
Solar Loop = 38 m/s, DRO insertion = 13 m/s)
-5
* One 60-min lunar eclipse N
* Flight Time ~11 months (336 days) ot TN
———
— From Nov 18, 2027 to Oct 20, 2028 a1
x10° NRO escape (Earth-Moon synodic frame)
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Conclusion

« Systematic methodology to compute efficient NRHO to DRO
transfers is described

« Accurate initial guesses are generated by using pre-computed solar-
perturbed Moon-to-Moon transfers

» These transfers can be helpful for both robotic and human missions
In cislunar space

 Methodology could be readily applied to other types of orbit transfers
— DROto L2 Halo
— DRO to lunar polar orbit
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