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CubeSat Missions with Large Distances
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Iris Deep-Space Transponder

Processor Xilinx Virtex-6 w/ Leon-3FT
Uplink/Downlink Frequencies 7145 — 7235 / 8400 — 8500 * FPGA with embedded processor
Turn- d Rati 880/749 .
urm-around Ratio / e 30% volume reduction
Downlink Symbol Rates 62.5 bps —6.25 Msps
Uplink Data Rates 62.5 bps — 8 kbps L ngher data rates
. PCM/PSK/PM w/subcarr, .
Modulation Waveforms PCM/PM w/ biphase-L, BPSK e Expanded encoding support
Convolutional (r=1/2, k=7) . L
Telemetry Encoding Reed-Solomon (255,223) 1=1 or 5 * Increased receiver sensitivity

Turbo (1/2, 1/3, 1/6)
Concatenated codes

* Radiation tolerant design

Receiver Noise Figure <3.5dB

Carrier Tracking Threshold -151 dBm @ 20 Hz LBW 4
RF Output Power >3.8W

Navigation Support Doppler, Sequential/PN Ranging, Delta-DOR

-110 dBc/Hz @ 100 Hz, -117 dBc/Hz @ 1 kHz

Transmit Phase Noise -126 dBc/Hz @ 10 kHz, -127 dBc/Hz @ 100 kHz

Oscillator Stability 0.001 ppm @ 1 sec
Mass / Volume <1 kg (X/X only); 0.56 U (ex. SSPA/LNA)
Power Consumption gl

16.0 W full Tx/Rx (No SSPA), 33.7 W (w/ 4W SSPA)
Power Interface 9-28Vdc
Environmental AFT: -20°C to + 50°C; > 23krad; 14.1 Grms RV
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Hardware Desigh Considerations

Modular hardware built of slice elements
— NASA-STD-4009 (Space Telecom Radio System) guidelines
— Slices are interconnected with stacking connectors

— RF modules are generic to allow future designs with other
frequency bands (UHF, S, Ka)

Radiation tolerant up to 23 krads; no destructive SEL.
EMI covers/shields to minimize radiated emissions
Emphasized efficient thermal design

Aluminum covers
(173 W/m-K)

Nusil CV-2942
thermal compound Thermal
(0.999 W/m-K) Vias

1oz copper GND layers
pulled to edge of PWB.
(384 W/m-K)

Nusil CV2-2646 SN63 Solder

thermal compound (50 W/m-K)

(1.50 W/m-K)

S/C STRUCTURE/RADIATOR
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structure/radiator

* Chip-and-wire assy to
reduce losses for
higher efficiency

* Superheterodyne receiver with single-downconversion stage to 112.5 MHz IF
» Digitally closed tracking loops (carrier, subcarrier, symbol)

* Direct Digital Synthesis (DDS) reference for downlink carrier Doppler tracking

* Baseband telemetry modulated direct at X-band

* Embedded softcore processor (Leon3-FT) for configuration and protocol mgmt
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Digital Processor

Xilinx Virtex-6 FPGA

Leon-3FT softcore processor

SEL tested up to 37 MeV-cm2/mg
TMR logic and EDAC protected
Reprogrammable/Reconfigurable

14-bit DDS DAC
Doppler carrier tracking for
transponder functions

Modem Processor
Telecom Interface

Rad-Hard Memory ;
2 MB SRAM program memory = AT

o —— : '.
32 MB NVM for multiple software M- E'- o Tyco-160 Bus connector

images and configuration files 1 MHz Serial-Peripheral I/F
Expandable for SpaceWire

XILINX VIRTEX-6 FPGA
IRIS FIRMWARE Multi-Mission System Architectural Platform MODEM PROCESSOR
Telecom Interface
FEC Encoder
PING/PONG Blank Modulator 7"\‘ DOR Tone FILTER
WO AT SOl ARLLE (Ao a0l BUFFER | | Frames (Direct) "‘\X/‘ | Generator Gain/Bias g
SRAM 16Mb = 1
v Bypass f
Modulator XMIT Carrier :
SRAM 4Mb [« MEMORY CONTROLLER D/L DMA (SC+RNG) > Generator | » DDS t—+-» DAC
y Reed
Solomon
FLASH 32MB
ENG. CMD Turbo |, » Carrier TRK Digital Down L
TELEMETRY BUFFER Vector RAM [ i WIE S Loop Converter “ R
¥ Y
UPLINK HW CMD BCH SYMBOL
S/C C&DH « SPI INTERFACE BUFFER - DECODER SYNC TP AGC PWM
FIRECODE RITICAL RELAY QUTPUT
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Power Supply Board

Previous |

ris models were for low radiation environ.

(Mars ~2.9 krads). Design update necessary for EM-1

High Dose Rate Radiation Test Result
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Hard failures at 14-16 krads (biased)
Total functional failure by 50 krads
No degradation/failures up thru 50 krads
Functional failures at 17-21 krads (biased)
Output degraded 2% at 7 krads
No degradation/failures up thru 50 krads
No degradation/failures up thru 50 krads

90%

ciency

88% -

86%
84%
82%

8 10 12 14 16 18 20 22 24 26 28 30
Bus Input Voltage

Power Supply Effi

Key Power Supply Board Specs

Bus input range 8 — 28 Vdc
36 Watts full-load capability
High converter efficiency > 86%

13 secondary analog/digital voltages
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X-band RF Boards
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X-band RF Modules
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Bit Error Rate

Typical Transponder Performance
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Receiver characterization shows stellar performance
comparable to commercial transponders.

Low loop bandwidth is desirable for low signal levels,
but sensitive to frequency dynamics.

Typical uplink receiver Bit Error Rates on a 16 kHz
sine-wave subcarrier at 1.5 radian mod index.
Further performance improvements can be made
with modem processor parameter optimization.

High-rate testing shows spectrum of a direct-carrier
modulated 6.25 Msps waveform with Manchester
encoding.

|/Q imbalance seen as spurious outputs at nulls can
be eliminated by software tuning.

Copyright ©2017 California Institute of Technology. Government Sponsorship Acknowledged. 12



Future Work

* Upcoming Iris V2.1 Qualification Tests
— Complete ambient characterization
— Environmental tests: TVAC, Vibe, EMI/EMC
— DSN Compatibility Testing at DTF-21 Facility

* Future Enhancements
— Delay/Disruption Tolerant Networking
— Pseudo-noise regenerative ranging support
— Advanced higher-order modulation schemes (QPSK, 8PSK, etc.)
— State-of-the-art Forward Error Correction Algorithms (LDPC)
— Other frequency bands (UHF, S, Ka)
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Conclusion

Upcoming EM-1 CubeSat missions face challenging
deep-space telecom system requirements.

Thorough slice-by-slice design description of the Iris
Transponder was presented.

Comparable transponder performance demonstrated.

Software defined radios as “smart radios” are leading
the pathway to enable rapid technology infusion.
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