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« China contributes
10% = 4% of the
current global
radiative forcing.

« CO2:0.16 =£0.02
W/m?

« CH4:0.13 +£0.05
W/m? (includes
effects on ozone
and water vapor)

e Sulfates: -0.11 =
0.05 W/m? (from
SO,)

How will these change
In the future?
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Deteriorating air quality in China such as the
“Airpocalypse” in Harbin has led to ~500,000

premature deaths/yr (Chen et al, Lancet 2014)

prompting a “war on air pollution” from
government officials.

China’s AQ mitigation (12t 5-year plan) effort
has mainly centered on reducing, displacing,
relocating, and scrubbing pollutant emissions

from coal-based electrical power (Karplus et al,

2015; Nam et al, 2013).

AQ improvements could lock in commitments
to coal-power generation and a high carbon
pathway.

Director of the Development Research Center
(DRC) of China’s State Council energy
objectives to show a strong shift towards
natural gas and renewables within a decade.
(Sheehan et al, 2014)
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GLOBAL SOURCES OF
LOCAL POLLUTION

An Assessment of Long-Range Transport of Key Air Pollutants
to and from the United States
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Based upon a multi-constituent
satellite data assimilation/inversion
system (TES, MOPITT, MLS, OMI),
Miyazaki et al, 2017 showed that
China dramatically increased NOx
emissions until turning a corner in
2011.

NOx emission trend: 2005—- 2010
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In China, the sensitivity of
global methane loss rates
to precursor emissions
varies by a factor of 2
between 20N and 45N for
NOx and a by a factor of 7
between 120E and 90E for
CO.

Walker and Bowman, in Rev.

For RCPG6, total CH4 RF in Beijing and
Shanghai is dominated by CO emissions
whereas Pearl River Delta and Sichuan
Basin are largely balanced.

CH4 RF is driven by
the balance between
the magnitude of CO
and NOx emissions
trends and the spatially
dependent sensitivity




INDONESIA FIRES CONCENTRATED IN SUMATRA, KALIMANTAN AND PAPUA
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emissions Atmospheric transport
and chemistry model

Terrestrial exchange

Inverse Model
Ocean exchange

GOSAT/OCO-2 SIF, Jason
SST, nightlights, etc.

Posterior Carbon Fluxes

Attribution

0CO-2 CO2,
GOSAT CO2 and CH4,
MOPITT CO

The NASA Carbon Monitoring System Flux (CMS-Flux) attributes
atmospheric carbon variability to spatially resolved fluxes driven by
data-constrained process models across the global carbon cycle.
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“Top-down” emissions constrained by MOPITT CO

show elevated biomass burning in Sumatra and

Kalimantan. CO:CO2 calculated from Stockwell et

al, ACP (2016) (see E. Putra GC21C-1107).

CO2 fluxes constrained from OCO-2 are centered in

S. Kalimantan.

BB CO2 similar to 0.5 PgC in Yin et al, 2016 (GRL)
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Contribution of Top Emitters to CO2 growth rate
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The Indonesian region was the 2"9 highest contributor (0.45 ppm)
in total flux to the record CO2 growth rate in 2015.

But, Brazil was almost as important.
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Silva and Arellano, submitted show ratios of |

the variability in CO, NO,, and CO, show

distinct patterns relating to local combustion

Processes.

Reuters et al, 2014 showed that trends
Between NO, and CO, are diverging

Trend (% yr1)

Silva and Arellano, submitted
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key need for COP21 is how

fossil fuel emissions are
changing.

FF trend amplitude and
variability leads to time-to-
detection between 3 to >10
years.

However, natural carbon
variability increases time-to-
detection (factor 1.2 to >3)

Carbon feedbacks (carbon-
concentration and carbon
climate) contribute their own
trend.

Both are important.

years needed for Total trend detection

Trend in TOT (kgC m~2) yr—!

Yin and Bowman
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Bowman et al, Atm.Env. 2013

0CO-2, 0CO-3, GOSAT I,
MicroCarb, Sent.7 (?), TanSat, etc.

GeoCarb
Geo-CAPE, TEMPO

G3E? (5™
Sentinel-4 | {é

2?7
GEMS,GMAP-Asia, FY-4

Biomass?

LEO:

IASI+GOME-2, AIRS+OMI, CrIS+OMPS could provide UV+IR ozone products for more than a decade.
Combined UV+IR ozone products from GEO-UVN and GEO-TIR aboard Sentinel 4 (Ingmann et al, 2012 Atm.
Env.)

Sentinel 5p (TROPOMI) will provide column CO and CH4.

OCO-2+AIRS, GOSAT Il (IR+NIR) could provide vertical discrimination.

TEMPO, Sentinel-4, and GEMS, would provide high spatio-temporal air quality information.
GeoCarb and G3E could provide geo-carbon information.
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- Conclusion

* Climate mitigation requires an observation system of both
long and short-lived climate pollutants.

* AQ mitigation in developing countries will impact the near-
term trajectory of carbon emissions.
— The co-evolution of CO2, NO2, CO, and particulates can provide
insight
* Climate variability and feedbacks can coherently amplify
AQ and carbon distributions
— "Extreme” events may hinder policy objectives
— Trend detection of AQ and carbon must account for natural
variability
* |ntegrating AQ and carbon constellations will provide an
unprecedented capability
— Need quantitative analysis of constellation(s), e.g., OSSEs.




