
Efficient Runtime Verification of
First-Order Temporal Properties?

Klaus Havelund1 and Doron Peled2

1Jet Propulsion Laboratory,
California Institute of Technology, USA

2 Department of Computer Science
Bar Ilan University, Israel

Abstract. Runtime verification allows monitoring the execution of a system
against a temporal property, raising an alarm if the property is violated. In this
paper we present a theory and system for runtime verification of a first-order past
time linear temporal logic. The first-order nature of the logic allows a monitor
to reason about events with data elements. While runtime verification of proposi-
tional temporal logic requires only a fixed amount of memory, the first-order vari-
ant has to deal with a number of data values potentially growing unbounded in the
length of the execution trace. This requires special compactness considerations in
order to allow checking very long executions. In previous work we presented an
efficient use of BDDs for such first-order runtime verification, implemented in
the tool DEJAVU. We first summarize this previous work. Subsequently, we look
at the new problem of dynamically identifying when data observed in the past
are no longer needed, allowing to reclaim the data elements used to represent
them. We also study the problem of adding relations over data values. Finally,
we present parts of the implementation, including a new concept of user defined
property macros.

1 Introduction

Runtime verification (RV) is used to check the execution of a system against a temporal
property, e.g., Linear Temporal Logic (LTL), alarming when it is violated, so that aver-
sive action can be taken. To inspect an execution, the monitored system is instrumented
to report on occurrences of events. The monitor performs incremental computation, up-
dating its internal memory. It is important that this operation is efficient in terms of time
and space, in order to be able to keep up with rapid occurrence of events in very long
executions. Even if monitoring is performed offline, i.e. on log files, performance is an
issue when logs are large. For each consumed event, a monitor has to decide whether the
property is violated based on the finite part of the execution trace that it has viewed so
far. Thus, the checked properties are often limited to safety properties [25]. For a safety

? The research performed by the first author was carried out at Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and Space
Administration. The research performed by the second author was partially funded by Israeli
Science Foundation grant 2239/15: “Runtime Measuring and Checking of Cyber Physical Sys-
tems”.

property, any violating execution has a prefix that cannot be completed into an execu-
tion that satisfies it [2]. Hence, by definition, safety properties are those that are finitely
refutable. In LTL, safety properties are those that can be written in the form 2ϕ (for
always ϕ), where ϕ uses past operators:	 for previous-time and S for since [26]. While
it is sufficient to find one prefix that violates ϕ to deduce that 2ϕ does not hold, RV
often keeps monitoring the system and reporting on further prefixes that fail to satisfy
ϕ. We shall henceforth not prefix properties with 2.

Two central challenges in RV are to increase the expressiveness of the properties that
can be monitored, and to improve the efficiency of monitoring. Unfortunately, there is
often a tradeoff between these goals. Therefore, the combined goal is to achieve a good
balance that would allow checking the property we want to monitor with a reasonable
efficiency. While propositional LTL is useful for describing some properties, in many
cases we want to monitor executions with events that contain data values that need to be
related to each other. Such properties can be expressed e.g., using first-order temporal
logic or parametric automata. As monitoring may be done without assuming a bound
on the length of the execution or the cardinality of the data elements, remembering an
unbounded amount of elements may be unavoidable. Consider the property that asserts
that each file that is closed was opened before. This can be expressed in a first-order
temporal logic as follows (where P ϕ means: sometime in the past ϕ):

∀ f (close(f)−→ Popen(f)) (1)

If we do not remember for this property all the files that were opened, then we will
not be able to check when a file is closed whether it was opened before. This calls, in
the first place, for using an algorithm and data structure where memory growth is often
quite moderate, allowing to check large executions. In previous work [19] we presented
an algorithm based on the use of BDDs, and its implementation in the DEJAVU runtime
verification tool. In this paper we go a step further in increasing efficiency (and hence
the magnitude of executions that can be monitored) by presenting an approach for de-
tecting when data elements that were seen so far do not affect the rest of the execution
and can be discarded, also referred to as dynamic data reclamation. As mentioned,
the temporal formula (1) forces a monitor to store information about all the files that
were ever opened so that it can check that no file is closed without being opened. Con-
sider now a more refined specification, requiring that a file can be closed only if (in the
previous step) it was opened before, and has not been closed since:

∀ f (close(f)−→	(¬close(f)S open(f))) (2)

We can observe that if a file was opened and subsequently closed, then if it is closed
again before opening, the property would be invalidated just as in the case where it was
not opened at all. This means that we can “forget” that a file was opened when it is
closed without affecting our ability to monitor the formula. Assume that at any time
during the execution there are no more than N files opened simultaneously. Then, in
the approach to be presented here, we need space for only N file names for monitoring
the property. This is in contrast to our original algorithm, where space for all new file
names must be allocated.

2

The contributions of the paper are the following. We present an elegant algorithm,
and its implementation in DEJAVU for dynamically reclaiming data elements that can
not affect the value of the property anymore. Our solution is based on using a non-
trivial combination of BDD operations to automatically detect values that are not further
needed for the rest of the monitoring. Note that the approach does not involve static
analysis of formulas. We furthermore introduce relations between variables (such as
x > y) and a distinction between two forms of quantification: quantification over infinite
domains and, as a new concept in DEJAVU, quantification over values seen in the trace.

The remaining part of the paper is organized as follows. Section 2 presents the
syntax and semantics of the logic, while Section 3 presents the BDD-based algorithm.
Section 4 introduces the new dynamic data reclaiming algorithm. Section 5 introduces
relations and the new forms of quantification over seen values. Section 6 outlines the
implementation. Section 7 presents an evaluation of the dynamic data reclamation im-
plementation. Section 8 describes related work, and finally Section 9 concludes the
paper.

2 Syntax and Semantics

In this section we present briefly the syntax and semantics of the logic used, and the
algorithm for past first-order LTL monitoring using BDDs, implemented in the DEJAVU
tool. Assume a finite set of domains D1,D2, Assume further that the domains are
infinite, e.g., they can be the integers or strings1. Let V be a finite set of variables, with
typical instances x, y, z. An assignment over a set of variables W maps each variable
x∈W to a value from its associated domain domain(x). For example [x→ 5,y→ “abc”]
maps x to 5 and y to “abc”. Let T a set of predicate names with typical instances p, q,
r. Each predicate name p is associated with some domain domain(p). A predicate is
constructed from a predicate name and a variable or a constant of the same type. Thus,
if the predicate name p and the variable x are associated with the domain of strings, we
have predicates like p(“gaga”), p(“baba”) and p(x). Predicates over constants are called
ground predicates. An event is a finite set of ground predicates. (Some restrictions may
be applied by the implementation, e.g., DEJAVU allows only a single ground predicate
in an event.) For example, if T = {p,q,r}, then {p(“xyzzy”),q(3)} is a possible event.
An execution σ = s1s2 . . . is a finite sequence of events.

For runtime verification, a property ϕ is interpreted on prefixes of a monitored se-
quence. We check whether ϕ holds for every such prefix, hence, conceptually, check
whether 2ϕ holds, where 2 is the “always in the future” linear temporal logic operator.
The formulas of the core logic, referred to as QTL (Quantified Temporal Logic) are de-
fined by the following grammar. For simplicity of the presentation, we define here the
logic with unary predicates, but this is not due to any principle limitation, and, in fact,
our implementation supports predicates with multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground predicate
p(a) occurs in the most recent event. The formula p(x), for a variable x ∈V , holds with
1 For dealing with finite domains see [19].

3

a binding of x to the value a if a ground predicate p(a) appears in the most recent event.
The formula (ϕ1 S ϕ2) means that ϕ2 held in the past (possibly now) and since then ϕ1
has been true. The property 	 ϕ means that ϕ was true in the previous event. We can
also define the following additional operators: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ),
P ϕ = (true S ϕ) (previously ϕ), H ϕ = ¬P ¬ϕ (historically ϕ, or ϕ always in the past),
and ∀x ϕ = ¬∃x¬ϕ. The operator [ϕ1,ϕ2), borrowed from [24], has the same meaning
as (¬ϕ2 S ϕ1), but reads more naturally as an interval.

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. Then
(γ,σ, i) |= ϕ, where γ is an assignment over free(ϕ), and i≥ 1, if ϕ holds for the prefix
s1s2 . . .si of the execution σ with the assignment γ. We denote by γ|free(ϕ) the restriction
(projection) of an assignment γ to the free variables appearing in ϕ and by ε the empty
assignment. The semantics of QTL can be defined as follows.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if p(a) ∈ σ[i].
– ([v 7→ a],σ, i) |= p(v) if p(a) ∈ σ[i].
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |=(ϕS ψ) if (γ|free(ψ),σ, i) |=ψ or the following hold: i> 1, (γ|free(ϕ),σ, i) |=

ϕ, and (γ,σ, i−1) |= (ϕS ψ).
– (γ,σ, i) |=	ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that2 (γ [x 7→ a],σ, i) |= ϕ.

Set Semantics It helps to present the BDD-based algorithm by first refining the
semantics of the logic in terms of sets of assignments satisfying a formula. Let I[ϕ,σ, i]
be the semantic function, defined below, that returns a set of assignments such that
γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ. The empty set of assignments /0 behaves as the Boolean
constant 0 and the singleton set that contains an assignment over an empty set of
variables {ε} behaves as the Boolean constant 1. We define the union and intersection
operators on sets of assignments, even if they are defined over non identical sets of
variables. In this case, the assignments are extended over the union of the variables.
Thus intersection between two sets of assignments A1 and A2 is defined like database
“join” operator; i.e., it consists of the assignments whose projection on the common
variables agrees with an assignment in A1 and with an assignment in A2. Union is
defined as the dual operator to intersection. Let A be a set of assignments over the
set of variables W ; we denote by hide(A,x) (for “hiding” the variable x) the set of
assignments obtained from A after removing from each assignment the mapping from
x to a value. In particular, if A is a set of assignments over only the variable x, then
hide(A,x) is {ε} when A is nonempty, and /0 otherwise. Afree(ϕ) is the set of all possible
assignments of values to the variables that appear free in ϕ. We add a 0 position for
each sequence σ (which starts with s1), where I returns the empty set for each formula.
The assignment-set semantics of QTL is shown in the following. For all occurrences of
i, it is assumed that i > 0.

2 γ [x 7→ a] is the overriding of γ with the binding [x 7→ a].

4

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
– I[p(v),σ, i] = {[v 7→ a]|p(a) ∈ σ[i]}.
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[ϕ,σ, i] = I[ϕ,σ, i−1].
– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

As before, the interpretation for the rest of the operators can be obtained from the above
using the connections between the operators.

3 An Efficient Algorithm using BDDs

We describe here briefly an algorithm for monitoring first order past time LTL proper-
ties, first presented in [19] and implemented as the first version of the tool DEJAVU.

We shall represent a set of assignments as an Ordered Binary Decision Diagram
(OBDD, although we write simply BDD) [10]. A BDD is a compact representation for
a Boolean valued function of type Bk → B for some k > 0 (where B is the Boolean
domain {0,1}), as a directed acyclic graph (DAG). A BDD is essentially a compact
representation of a Boolean tree, where compaction glues together isomorphic subtrees.
Each non-leaf node is labeled with one of the Boolean variables b0, . . . ,bk−1. A non-
leaf node bi is the source of two arrows leading to other nodes. A dotted-line arrow
represents that bi has the Boolean value 0, while a thick-line arrow represents that it
has the value 1. The nodes in the DAG have the same order along all paths from the
root. However, some of the nodes may be absent along some paths, when the result
of the Boolean function does not depend on the value of the corresponding Boolean
variable. Each path leads to a leaf node that is marked by either a 0 or a 1, representing
the Boolean value returned by the function for the Boolean values on the path. Figure 1
contains five BDDs (a)-(e), over three Boolean variables b0, b1, and b2 (referred to by
their subscripts 0, 1, and 2), as explained below.

Mapping data to BDDs Assume that we see p(“ab”), p(“de”), p(“af”) and q(“fg”)
in subsequent states in a trace, where p and q are predicates over the domain of strings.
When a value associated with a variable appears for the first time in the current event
(in a ground predicate), we add it to the set of values of that domain that were seen.
We assign to each new value an enumeration, represented as a binary number, and use
a hash table to point from the value to its enumeration.

Consistent with the DEJAVU implementation, the least significant bit in an enumer-
ation is denoted in this figure (and in the rest of this paper) by BDD variable 0, and the
most significant bit by the BDD variable with highest index. Using e.g. a three-bit enu-
meration b2b1b0, the first encountered value “ab” can be represented as the bit string
000, “de” as 001, “af” as 010 and “fg” as 011. A BDD for a subset of these values
returns a 1 for each bit string representing an enumeration of a value in the set, and 0

5

otherwise. E.g. a BDD representing the set {“de”,“af”} (2nd and 3rd values) returns 1
for 001 and 010. This is the Boolean function ¬b2 ∧ (b1 ↔ ¬b0). Figure 1 shows the
BDDs for each of these values as well as the BDD for the set containing the values “de”
and “af”.

01

0

1

2

(a) BDD for {“ab”}:
¬b2∧¬b1∧¬b0

0 1

0

1

2

(b) BDD for {“de”}:
¬b2∧¬b1∧b0

01

0

1

2

(c) BDD for {“af”}:
¬b2∧b1∧¬b0

0 1

0

1

2

(d) BDD for {“fg”}:
¬b2∧b1∧b0

01

0

11

2

(e) BDD for {“de”, “af”}:
¬b2∧ (b1↔¬b0)

Fig. 1: BDDs for the trace: p(“ab”).p(“de”).p(“af”).q(“fg”)

When representing a set of assignments for e.g. two variables x and y with k bits
each, we will have Boolean variables x0, . . . ,xk−1, ,y0, . . .yk−1. A BDD will return a 1
for each bit string representing the concatenation of enumerations that correspond to the
represented assignments, and 0 otherwise. For example, to represent the assignments
[x 7→ “de”,y 7→ “af”], where “de” is enumerated as 001 and “af” with 010, the BDD
will return a 1 for 001010.

6

The BDD-based algorithm Given some ground predicate p(a) observed in the execu-
tion matching with p(x) in the monitored property, let lookup(x,a) be the enumeration
of a. If this is a’s first occurrence, then it will be assigned a new enumeration. Other-
wise, lookup returns the enumeration that a received before. We can use a counter, for
each variable x, counting the number of different values appearing so far for x. When a
new value appears, this counter is incremented, and the value is converted to a Boolean
representation. Enumerations that were not yet used represent the values not seen yet.
In the next section we introduce data reclaiming, which allows reusing enumerations
for values that no longer affect the checked property. This involves a more complicated
enumeration mechanism.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. This BDD is independent of the val-
ues assigned to any variable other than x, i.e., they can have any value. For example,
assume that we use three Boolean variables (bits) x0, x1 and x2 for representing enu-
merations over x (with x0 being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 011, and lookup(x,b) = 001. Then build(x,A) is a BDD representation
of the Boolean function x0∧¬x2.

Intersection and union of sets of assignments are translated simply to conjunction
and disjunction of their BDD representation, respectively, and complementation be-
comes negation. We will denote the Boolean BDD operators as and, or and not. To im-
plement the existential (universal, respectively) operators, we use the BDD existential
(universal, respectively) operators over the Boolean variables that represent (the enu-
merations of) the values of x. Thus, if Bϕ is the BDD representing the assignments sat-
isfying ϕ in the current state of the monitor, then exists(〈x0, . . . ,xk−1〉,Bϕ) is the BDD
that represents the assignments satisfying ∃xϕ in the current state. Finally, BDD(⊥) and
BDD(>) are the BDDs that return always 0 or 1, respectively.

The algorithm, shown below, operates on two vectors (arrays) of values indexed by
subformulas (as in [21]): pre for the state before that event, and now for the current state
(after the last seen event).

1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a|p(a) ∈ s}.
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕSψ)))).
– now(ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . ,xk−1〉,now(ϕ)).

5. Goto step 2.

An important property of the algorithm is that, at any point during monitoring, enu-
merations that are not used in the pre and now BDDs represent all values that have not

7

been seen so far in the input. This can be proved by induction on the size of temporal
formulas and the length of the input sequence. We specifically identify one enumeration
to represent all values not seen yet, namely the largest possible enumeration, given the
number of bits we use, 11 . . .11. We let BDD(11 . . .11) denote the BDD that returns 1
exactly for this value. This trick allows us to use a finite representation and quantify
existentially and universally over all values in infinite domains.

Dynamic Expansion of the BDDs We can sometimes define the number k of Boolean
variables per domain to be a large enough such that we anticipate no more than 2k−1
different values. However, if the number of bits used for representing enumerations be-
comes insufficient, we can dynamically expand it during RV [19]. As explained above,
the enumeration 11 . . .11 of length k represents for every variable “all the values not
seen so far in the input sequence”. Consider the following two cases:

– When the added (most significant) bit has the value 0, the enumeration still repre-
sents the same value. Thus, the updated BDD needs to return the same values that
the original BDD returned without the additional 0.

– When the added bit has the value 1, we obtain enumerations for values that were
not seen so far in the input. Thus, the updated BDD needs to return the same values
that the original BDD gave to 11 . . .11.

An increase in one bit allows doubling the number of enumerations, hence, this,
relatively expensive operation does not need to take place frequently (if at all). We
demonstrate the expansion of the enumerations by a single bit on formulas with three
variables, x, y and z, represented using three BDD bits each, i.e., x0, x1, x2, y0, y1, y2, z0,
z1, z2. We want to add a new most significant bit ynew for representing y. Let B be the
BDD before the expansion. The case where the value of ynew is 0 is the same as for a
single variable. For the case where ynew is 1, the new BDD needs to represent a function
that behaves like B when all the y bits are set to 1. Denote this by B[y0 \1,y1 \1,y2 \1].
This function returns the same Boolean values independent of any value of the y bits,
but it depends on the other bits, representing the x and z variables. Thus, to expand the
BDD, we generate a new one as follows:

((B∧¬ynew)∨ (B[y0 \1,y1 \1,y2 \1]∧ ynew))

Expanding the number of bits allowed for enumerations, when needed, has the dis-
advantage that memory can grow unbounded. The next section suggests a method for
identifying enumerations of values that can no longer affect the checked property, and
therefore can be reclaimed.

4 Dynamic Data Reclamation

In the previous section, we described an algorithm that implements runtime verification
with data, based on a BDD representation. The algorithm generates a new enumeration
for each value that appears in the input and uses a hash table to map from a value to its

8

enumeration. It is possible that the set of enumerations for some variable eventually ex-
ceeds the number of bits allocated for the BDD. In this case, the BDD can be expanded
dynamically, as shown in the previous section. However, this can be very costly, and we
may eventually run out of memory. In this section we study the possibility of reusing
enumerations of data values, when this does not affect the decision whether the prop-
erty holds or not. When a value a is reclaimed, its enumeration e can be reused for
representing another value that appears later in the execution.

We saw in the introduction an example of a property where values that already
occurred cannot be reclaimed (1), and a similar property, where there are values that are
not useful any more from some point in the execution (2). Consider a more complicated
example:

∀z(r(z)→∃y(q(y)S p(z)) (3)

It asserts that when a ground predicate r(a) appears with some value a, then there should
be at least one value b for which q(b) appeared ever since the most recent appearance
of p(a) (an appearance of p(a) is required). Consider an execution σ with some prefix
ρ that does not contain r(a) since the most recent appearance of p(a). Furthermore, no
ground predicate q(b) commonly appears since the last occurrence of p(a). In this case,
when r(a) later occurs in σ, the property (3) will be violated. This is indistinguishable
from the case where p(a) never occurred. Thus, after seeing ρ, we can “forget” the
value a.

Recall that upon the occurrence of a new event, the basic algorithm uses the BDD
pre(ψ), for any subformula ψ, representing assignments satisfying this subformula cal-
culated based on the sequence monitored so far. Since these BDDs sufficiently summa-
rize the information that will be used about the execution monitored so far, reclaiming
data can be performed fully automatic, without user guidance or static formula analysis,
solely based on the information the BDDs contain.

We are seeking a condition for reclaiming values of a variable x. Let A be a set of
assignments over some variables that includes x. Denote by A[x = a] the set of assign-
ments from A in which the value of x is a. We say that the values a and b are analogous
for variable x in A, if hide(A[x = a],x) = hide(A[x = b],x). This means that a and b, as
values of the variable x, are related to all other values in A in the same way. A value
can be reclaimed if it is analogous to the values not seen yet, in all the assignments
represented in pre(ψ), for each subformula ψ.

As the pre BDDs use enumerations to represent values, we find the enumerations
that can be reclaimed and then, their corresponding values are removed from the hash
table, and these enumerations can later be reused to represent new values. Recall that the
enumeration 11 . . .11 represents all the values that were not seen so far, as explained in
Section 3. Thus, we can check whether a value a for x is analogous to the values not seen
so far for x by performing the checks between the enumeration of a and the enumeration
11 . . .11 on the pre BDDs. In fact, we do not have to perform the checks enumeration by
enumeration, but use a BDD expression that constructs a BDD representing (returning
1 for) all enumerations that can be reclaimed for a variable x.

To simplify the presentation and prevent using many indexes, assume that a subfor-
mula ψ has three free variables, x, y and z, each with k bits, i.e., x0, . . . ,xk−1, y0, . . . ,yk−1
and z0, . . . ,zk−1. The following expression returns a BDD representing all the enumera-

9

tions of x values that are analogous to 11 . . .11 in pre(ψ).

Iψ,x = ∀y0 . . .∀yk−1∀z0 . . .∀zk−1(pre(ψ)[x0 \1, . . .xk−1 \1]↔ pre(ψ))

The available enumerations for the variable x are represented then by the conjunction of
Iψ,x over all subformulas ψ of the specification ϕ. (Note that this will also include enu-
merations that are not used, as they are also analogous to 11 . . .11 in all subformulas.)

To take advantage of reclaimed enumerations, we cannot generate them in succes-
sive order using a counter anymore. Thus we need to keep a set of available enumera-
tions. This can be represented using a BDD. Let avail(x) be the BDD that represents the
enumerations (given as a Binary encoding x0, . . . ,xk−1) that are available for values of
x. Initially at the start of monitoring, we set avail(x) :=¬BDD(11 . . .11). Let sub(ϕ) be
the set of subformulas of the property ϕ. When the number of available enumerations
becomes short, and we want to perform data reclamation, we calculate Iψ,x for all the
subformulas ψ ∈ sub(ϕ) that contain x as a free variable, and set:

avail(x) := (
∧

ψ∈sub(ϕ),x∈free(ψ)

Iψ,x)∧¬BDD(11 . . .11)

This updates avail(x) to denote all available enumerations, including reclaimed enu-
merations. When we need a new enumeration, we just pick some enumeration e that
satisfies avail(x). Let BDD(e) denote a BDD that represents only the enumeration e. To
remove that enumeration from avail(x), We update avail(x) as follows:

avail(x) := avail(x)∧¬BDD(e)

The formula Iψ,x includes multiple quantifications (over the bits used to represent the
free variables other than x). Therefore, it may not be efficient to reclaim enumerations
too frequently. We can reclaim enumerations either periodically or when avail(x) be-
comes empty or close to empty. Data reclaiming may sometimes be time consuming
and also result in expanding the BDD. This is based on the observation that a BDD
representing just the Binary enumerations from 1 to n is much more compact than a
BDD representing some n random enumerations. On the other hand, as we observe in
the evaluation section, the ability to use less Boolean variables for enumerations due to
reclaiming data may require less memory and time.

As the BDD-based algorithm detects an enumeration e that can be reclaimed, we
need to identify the related data value a and update the hash table, so that a will not
point to e. In particular, we need to be able to find the data that is represented by a given
enumeration. To do that, one can use a trie [12]: in our case this will be a trie with at
most two edges from each node, marked with either 0 or 1. Traversing the tree from its
root node on edges labeled according to the enumeration e reaches a node that contains
the value a that is enumerated as e. Traversing and updating the trie is linear per each
enumeration. The current implementation, however, uses the simpler straightforward
strategy of walking though all values and removing those which point to reclaimed
enumerations.

10

5 Relations and Quantification over Seen Values

Quantification over seen values The QTL logic allows assertions over infinite do-
mains (for handling finite domains, see [19]). The quantification defined in Section 2
is over all possible domain values, whether they appeared already in the monitored se-
quence or not. It is sometimes more natural to quantify only over values that already
appeared in events. Consider the property that asserts that there exists a session s, such
that any user u that has ever logged into any session (s′) so far, is currently logged into
this session s and not logged out yet. This can be expressed in the following slightly
inconvenient manner:

∃s∀u((∃s′P login(u,s′))→ (¬logout(u,s)S login(u,s))) (4)

One may be tempted to use the following shorter formula with the naive intent that we
quantify over all users u seen in the trace so far:

∃s∀u(¬logout(u,s)S login(u,s)) (5)

Unfortunately, this formula does not have the intended semantics because it asserts that
all potential users have not logged out since they logged into s. For an unbounded do-
main, this property can never hold, since at any time, only a finite number of users could
have been observed to log in. Property (5) can, however, be corrected to conveniently
quantify only over values u that were seen so far in the monitored sequence. We extend
the logic QTL with the bounded quantifiers ∃̃ and ∀̃, quantifying over only seen values,
hence we can now express property (4) as:

∃s∀̃u(¬logout(u,s)S login(u,s)) (6)

The new kind of quantifiers do not extend the expressive power of the logic, as one can
always use the form of property (4) to limit the quantification to seen values. However,
it allows writing shorter formulas, and is also supported by an efficient implementation.

In order to implement the quantifiers ∃̃ and ∀̃, we keep, for each variable x that
is quantified in this way, a BDD seen(x). seen(x) is initialized to the empty BDD
(BDD(⊥)). Upon seeing an event with a new value a for x, we update seen(x)
such that for the BDD bits representing the new enumeration e for a it will also
return 1. That is, seen(x) := or(seen(x),BDD(e)). We augment our algorithm with
now(∃̃xϕ) := exists(〈x0, . . . , xk−1〉,and(seen(x),now(ϕ))). For implementing ∀̃x, note
that ∀̃xϕ = ¬∃̃x¬ϕ.

Arithmetic Relations Another extension of the QTL logic is the ability to use arith-
metic relations. This allows comparing between values that occurred, as in the following
property:

∀x(p(x)→∃y 	 (P q(y)∧ x > y)) (7)

It asserts that if p(x) is seen with some value of x, then there exists a smaller value y such
that q(y) was seen in the past. In order to implement this comparison along the same
lines of the set semantics BDD-based solution, we can represent a BDD now(x> y) over

11

the enumerations of the variables x and y. Suppose that x and y are represented using
the BDD bits x0, . . . , xk−1, y0, . . . yk−1. Then, now(x > y) returns a 1 when x0, . . . , xk−1
represents the enumeration for some seen value a, and y0, . . . , yk−1 represents the enu-
meration of some seen value b, where b > a.

The BDD now(x > y) is updated incrementally, when a new value for x or for y is
seen. For property (7), that would be an occurrence of an event that contains a ground
predicate of the form p(a) or q(b). Suppose that a is a new value for the variable x.
We build at this point a temporary BDD Ba>x that represents the set of assignments
{[x 7→ a,y 7→ b] | b∈ seen(y)∧a > b}. Then we set now(x > y) := or(pre(x > y),Ba>y).

Property (7) guarantees (due to the subformula P q(y)) that the values compared us-
ing x > y were already seen. The following property, however, appears more ambiguous
since the domain of y is not completely clear:

∀x(p(x)→∃yx > y) (8)

For example, assuming standard mathematical reasoning, if y ranges over the integers,
then this property should always hold; if y ranges over the naturals, then this should hold
if x is bigger than 0, although some definitions of the naturals do not contain 0, in which
case this should hold if x is bigger than 1. To solve ambiguity, we chose an alternative
implementation; we analyze the formulas, and if a relation contains an occurrence of a
variable x in the scope of a quantification ∀x or ∃x, we change the quantification into ∀̃x
or ∃̃x, respectively.

6 Implementation

Basic Algorithm DEJAVU is implemented in SCALA. The current version, which sup-
ports data reclamation, is an augmentation of the tool previously described in [19].
DEJAVU takes as input a specification file containing one or more properties, and gen-
erates a self-contained SCALA program (a text file) - the monitor. This program (which
first must be compiled) takes as input the trace file and analyzes it. The tool uses the
following libraries: SCALA’s parser combinator library for parsing [29], the Apache
Commons CSV (Comma Separated Value format) parser for parsing log files [4], and
the JavaBDD library for BDD manipulations [22]. We shall illustrate the monitor gen-
eration using an example. Consider the property CLOSE in Figure 4, which corresponds
to property 1 on page 2, but in the input format for the tool. The property-specific part3

of the generated monitor, shown in Figure 2 (left), relies on an enumeration of the sub-
formulas, shown in Figure 2 (right). Specifically, two arrays are declared, indexed by
subformula indexes: pre for the previous state and now for the current state. For each
observed event, the function evaluate() computes the now array from highest to lowest
index, and returns true (property is satisfied in this position of the trace) iff now(0) is
not false, i.e., not BDD(⊥). At composite subformula nodes, BDD operators are ap-
plied. For example for subformula 3, the new value is now(4).or(pre(3)), which is the
interpretation of the formula P open(f) corresponding to the law: Pϕ = (ϕ∨	 Pϕ). As
can be seen, for each new event, the evaluation of a formula results in the computation

3 An additional 530 lines of property independent boilerplate code is generated.

12

of a BDD for each subformula. It turns out that this process, linear in the size of the
formula, is rather efficient.

...
class Formula p extends Formula(monitor) {

var pre : Array[BDD] = Array. fill (5)(False)
var now : Array[BDD] = Array. fill (5)(False)
var tmp : Array[BDD] = null
val var f :: Nil = declareVariables(("f",false))

override def evaluate(): Boolean = {
now(4) = build("open")(V("f"))
now(3) = now(4).or(pre(3))
now(2) = build("close")(V("f"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var f.quantvar)
val error = now(0).isZero
tmp = now; now = pre; pre = tmp
! error
}
}

0 : Forall f . close(f) -> P open(f)

1 : close(f) -> P open(f)

2 : close(f) 3 : P open(f)

4 : open(f)

Fig. 2: Monitor (left) and subformula enumeration (right) for property CLOSE

Dynamic Memory Reclamation The implementation of dynamic data reclamation is
illustrated with the code snippets in Figure 3. The method build (...)(...): BDD (lines
1-3) is called in Figure 2 (left) for subformulas 2 and 4. It in turn calls the method
getBddOf(v: Any):BDD (line 2) on the Variable object (the class of which is defined
on lines 5-34) denoted by the variable name ‘name’ (looked up in varMap), and with
the value v occurring in the current event. This method (lines 6-17) returns the BDD
corresponding to the newly observed value v. In case the value has previously been
encountered (line 7-9), the previously allocated BDD is returned. Otherwise (line 10),
if the variable avail of available BDDs is False (none available), the data reclamation
is activated (explained below). An Out Of Memory error is thrown in case there still
are no available BDDs (line 11). Otherwise (line 12), we select an available BDD from
avail using JavaBDD’s SAT solver (satOne() which when called on a BDD returns
some bit enumeration for which the BDD returns 1). The selected BDD (result) is then
“removed” from the avail BDD (line 13), and the hash table from values to the BDDs
that represent them is finally updated (line 14). Note that the hash table maps each data
value directly to a BDD representing its enumeration. The method reclaimData() (lines
19-26) starts with an avail BDD allowing any assignment different from 11 . . .11 (line
20), and then refines it by repeatedly (line 22) computing formula Iψ,x from Section 4
for each temporal subformula (the method getFreeBDDOf(...):BDD computes Iψ,x.), and

13

1 def build (name: String)(patterns: Pattern∗): BDD = {
2 ... varMap(name).getBDDOf(v) ...
3 }
4

5 class Variable(name: String) {
6 def getBDDOf(v: Any): BDD = {
7 if (bdds.contains(v)) {
8 bdds(v)
9 } else {

10 if (avail . isZero) reclaimData()
11 if (avail . isZero) error ()
12 val result = avail .satOne(...)
13 avail = avail .and(result .not())
14 bdds = bdds + (v→ result)
15 result
16 }
17 }
18

19 def reclaimData(): Unit = {
20 avail = allOnes.not
21 for (i ← indicesOfTemporalOps) {
22 val bdd i = getFreeBDDOf(name, pre(i))
23 avail = avail .and(bdd i)
24 }
25 removeReclaimedData()
26 }
27

28 def removeReclaimedData(): Unit = {
29 for (v ← bdds.keySet) {
30 val bdd = bdds(v)
31 if (bdd.imp(avail) . isOne) bdds = bdds − v
32 }
33 }
34 }
35

36 def getFreeBDDOf(varName: String, formula: BDD): BDD = {
37 val variable = varMap(varName)
38 val formulaWithOnes = formula.restrict(variable .allOnes)
39 var result = formulaWithOnes.biimp(formula)
40 for (quantVar← otherQuantVars(varName)) result = result.forAll (quantVar)
41 result
42 }

Fig. 3: Implementation of dynamic data reclamation

14

and-ing the result to avail (line 23), corresponding to down-selecting with set intersec-
tion. The method removeReclaimedData() (lines 36-42) finally removes those values
that map to a BDD that is included in avail . The test bdd.imp(avail). isOne (line 31) is
the logic formulation of “the BDD avail contains the BDD bdd”.

Relations and Quantification over Seen Values Relations and quantification over
seen values are implemented in a straight forward manner as explained in Section
5. We shall explain here just the concrete syntax chosen for relations and quanti-
fiers. Relations are written exactly as in Section 5, e.g. y < x. It is also possible to
compare variables to constants, as in z < 10. Concerning the two forms of quanti-
fiers (quantification over infinite domains and quantification over seen values) we use
Exists (for ∃) and Forall (for ∀) to quantify over infinite domains, and exists (for
∃̃) and forall (for ∀̃) to quantify over seen values. For example, property (6) in Sec-
tion 5, reading ∃s∀̃u(¬logout(u,s)S login(u,s)) (there exists a session s such that any
user u that has ever logged into a session so far, is currently logged into session
s - and not logged out yet), is expressed as follows in DEJAVU’s concrete syntax:
Exists s . forall u . ! logout(u,s) S login (u,s).

7 Evaluation of Dynamic Data Reclamation

In this section we evaluate the implementation of DEJAVU’s dynamic data reclamation
algorithm. We specifically evaluate the four temporal properties shown in Figure 4, writ-
ten in DEJAVU’s input notation, on different sizes and shapes of traces (auto-generated
specifically for stress testing the algorithm), while varying the number of bits allocated
to represent variables in BDDs. The properties come in two variants: those that do not
trigger data reclamation and therefore cause accumulation of data in the monitor, and
those (who’s names have suffix ‘DR’) that do trigger data reclamation, and therefore
save memory. The first two properties model variants of the requirement that a file can
only be closed if has been opened. Property CLOSE corresponds to formula (1), and will
not trigger data reclamation as explained previously. Property CLOSEDR corresponds
to formula (2) and will trigger data reclamation. The next two properties model variants
of the requirement that a file cannot be opened if it has already been opened. Property
OPEN states that if a file is opened then either (in the previous step) it must have been
closed in the past and not opened since, or it must not have been opened at all in the
past. This latter disjunct causes the formula not to trigger data reclamation, essentially
for the same reason as for CLOSE. Finally, property OPENDR states this more elegantly
by requiring that if a file was opened in the past, and not closed since then, it cannot be
opened. This property will trigger data reclamation.

Table 1 shows the result of the evaluation, which was performed on a Mac OS
X 10.10.5 (Yosemite) operating system with a 2.8 GHz Intel Core i7, and 16 GB of
memory. The properties were evaluated on traces of sizes spanning from (approxi-
mately) 2 million to 3 million events, with approximately 1-1.5 million files opened

15

// A file can only be closed if has been opened:
prop close : Forall f . close (f) → P open(f)
prop closeDR : Forall f . close (f) → @ (! close (f) S open(f))

// A file cannot be opened if it has already been opened:
prop open : Forall f . open(f) → @ (((! open(f) S close (f))) | ! P open(f))
prop openDR : Forall f . @ (! close (f) S open(f)) → ! open(f)

Fig. 4: Four evaluation properties

Table 1: Evaluation. For each property, the performance against each log is shown. For
each log, its size in number of events, and number of files opened are shown. Further-
more the pattern of the log is shown as three numbers O :C :R where O is the number of
events opened initially, C is the number of close events and new open events in each it-
eration, and R indicates how many times the C pattern is repeated. For each experiment
is shown how many bits (followed by a ‘b’) per variable, how many seconds (‘s’) the
trace analysis took, and whether there was an out of memory (OOM) or whether the
presented data reclamation was invoked (dr).

.

Property Log 1 Log 2 Log 3 Log 4
————– ————– ————– ————–

2,052,003 events 3,007,003 events 2,400,009 events 2,000,004 events
1,051,000 files 1,504,000 files 1,200,006 files 1,000,001 files

50,000:1,000:1,000 1,000:500:3,000 6:5:200,000 1:1:1,000,000

CLOSE
21b : 10.2s
20b : 12.5s OOM

21b : 14.3s
20b : 12.5s OOM

21b : 10.6s
20b : 12.8s OOM

20b : 9.5s
2b : 0.6s OOM

CLOSEDR
20b : 13.3s dr
15b : 14.8s dr

21b : 17.0s
20b : 21.2s dr
10b : 10.6s dr

21b : 12.5s
20b : 14.0s dr
10b : 7.6s dr
3b : 5.4s dr

20b : 9.0s
2b : 4.7s dr

OPEN
21b : 15.2s
20b : 17.5s OOM

21b : 25.3s
20b : 18.9s OOM

21b : 17.1s
20b : 17.7s OOM

20b : 11.7s
2b : 0.6s OOM

OPENDR
20b : 15.2s dr
16b : 16.1s dr

20b : 27.4s dr
10b : 10.6s dr

20b : 13.8s dr
10b : 8.2s dr
3b : 5.5s dr

20b : 9.1s
2b : 5.6s dr

in each log (see table for exact numbers). Traces have the following general form: ini-
tially O files, where O ranges from 0 to 50,000, are opened in order to accumulate a
large amount of data stored in the monitor. This is followed by a repetitive pattern of
closing C files and opening C new files. This pattern is repeated R times. The shape
of each log is shown in the table as O :C : R. For example, for Log 1 we have that:
O :C :R = 50,000 : 1,000 : 1,000.

For each combination of property and log file, we experimented with different num-
ber of bits used to represent observed file values in the traces: 21, 20, 16, 15, 10, 3,

16

and 2 bits, corresponding to the ability to store respectively 2097151, 1048575, 65535,
32767, 1023, 7, and 3 different values for each variable (having subtracted the 11 . . .11
pattern reserved for representing “all other values”). The following abbreviations are
used: OOM = Out of Memory (the number of bits allocated for a variable are not suf-
ficient), and dr = data reclamation according to the algorithm presented in this paper
has occurred. Typically when data reclamation occurs, approximately 1-1.5 million data
values are reclaimed.

Table 1 demonstrates that properties CLOSE and OPEN run out of memory (bits) if
the allocated number of bits is not large enough to capture all opened files. For these
properties, 21 bits are enough, while 20 bits are insufficient in most cases. On the other
hand, the properties CLOSEDR and OPENDR can be monitored on all logs without
OOM errors, by invoking the data reclamation, and without substantial differences in
elapsed trace analysis time. In fact, we observe for these latter two properties, that as we
reduce the number of bits, and thereby force the data reclamation to occur more often,
the lower are the elapsed trace analysis times. As a side remark, for logs with an initially
large amount of file openings, specifically logs 1 and 2, a certain minimum amount of
bits are required to store these files. E.g. we cannot go below 15 bits for the CLOSEDR
property on log 1. In contrast, we can go down to 2 bits for log 4 for the same property,
even though logs 1 and 4 have approximately the same length and the same number of
files being opened. In summary, for certain data reclamation friendly properties, data
reclamation can allow monitoring of traces that would otherwise not be monitorable.
In addition, data reclamation combined with reducing the number of bits representing
variables seems to reduce execution time, a surprisingly positive result. We had in fact
expected the opposite result.

It is well known that efficiency on BDD-based techniques are sensitive to the order-
ing of variables in the BDDs. Currently, as already indicated, the variable corresponding
to the least significant bit always occurs first (at the top), and the variable correspond-
ing to the most significant bit appears last (at the bottom), in the BDD. One may con-
sider alternative orderings, either determined statically from the formula or dynamically
as monitoring progresses. We have not explored such alternatives at the time of writ-
ing. Another factor potentially influencing efficiency may be the structure of monitored
data. Consider e.g. the monitoring of data structures in a program, such as sets, lists,
or, generally, objects in an object-oriented programming language. It is here important
to stress that the shape of data monitored is not reflected in the BDDs themselves, but
only concerns the mapping from data to BDDs using a hash table, which indeed sup-
ports complex data keys. However, as we have only experimented with offline log file
analysis, we have not explored this online monitoring problem.

Macros A new addition to DEJAVU is the possibility to define data parameterized
macros representing subformulas, which can be called in properties, without having
any performance consequences for the evaluation. Macros are expanded at the call site.
Macros can call macros in a nested manner, supporting a compositional way of building
more complex properties. Figure 5 illustrates the use of macros to define the properties
from Figure 4, and should be self explanatory. Also, events can be declared up front in

17

order to ensure that properties refer to the correct events, and with the correct number
of arguments (not shown here).

pred isOpen(f) = ! close (f) S open(f)
pred isClosed (f) = !open(f) S close (f)
pred wasOpened(f) = P open(f)

// A file can only be closed if has been opened:
prop close : Forall f . close (f) → wasOpened(f)
prop closeDR : Forall f . close (f) → @ isOpen(f)

// A file cannot be opened if it has already been opened:
prop open : Forall f . open(f) → @ (isClosed (f) | ! wasOpened(f))
prop openDR : Forall f . @ isOpen(f) → ! open(f)

Fig. 5: Four evaluation properties using macros

8 Related Work

There are several systems that allow monitoring temporal properties with data. The
systems closest to our presentation, in monitoring first-order temporal logic, are MON-
POLY [8] and LTLFO [9]. As in the current work, MONPOLY monitors first-order tem-
poral properties. In fact, it also has the additional capabilities of asserting and checking
properties that involve progress of time and a limited capability of reasoning about
the future. The main difference between our system and MONPOLY is in the way in
which data are represented and manipulated. MONPOLY exists in two versions. The
first one models unbounded sets of values using regular expressions (see, e.g., [23] for
a simple representation of sets of values). This version allows unrestricted complemen-
tation of sets of data values. Another version of MONPOLY, which is several orders
of magnitude faster according to [8], is based on storing finite sets of assignments,
and applying database operators to these. In that implementation complementation, and
some of the uses of logical and modal operators is restricted, due to the explicit finite
set-representation used. This has as consequence that not all formulas are monitorable,
see [20] for details. The BDD representation in DEJAVU provides full expressiveness,
allowing for any arbitrary combination of Boolean operators, including negation, tem-
poral operators, and quantifiers, and with a fully compositional interpretation of for-
mulas. In [19] we compared DEJAVU to this latter version of MONPOLY and showed
performance advantages of DEJAVU.

LTLFO [9] supports first-order future time LTL, where quantification is restricted to
those elements that appear in the current position of the trace. The monitoring algorithm

18

is based on spawning automata. Monitoring first-order specifications has also been ex-
plored in the database community [13] in the context of so-called temporal triggers,
which are first-order temporal logic specifications that are evaluated w.r.t. a sequence
of database updates.

An important volume of work on data centric runtime verification is the set of sys-
tems based on trace slicing. Trace slicing is based on the idea of mapping variable
bindings to propositional automata relevant for those particular bindings. This results
in very efficient monitoring algorithms, although with limitations w.r.t. expressiveness.
Systems based on trace slicing include TRACEMATCHES [1], MOP [27], and QEA [28].
QEA is an attempt to increase the expressiveness of the trace slicing approach. It is based
on automata, as is the ORHCIDS system [16]. Other systems include BEEPBEEP [17]
and TRACECONTRACT [6], which are based on future time temporal logic using for-
mula rewriting. Very different kinds of specification formalisms can be found in systems
such as EAGLE [5], RULER [7], LOGFIRE [18] and LOLA [3]. The system MMT [15]
represents sets of assignments as constraints solved with an SMT solver. An encoding
of enumerations of values as BDDs appears in [30], where BDDs are used to represent
large relations in order to efficiently perform program analysis expressed as Datalog
programs. However, that work does not deal with unbounded domains.

Concerning reclamation of data values no longer needed in a monitor we are aware
of the following alternative approaches. MONPOLY is interesting since it is part of the
monitoring algorithm to get rid of such unnecessary values, and as such data reclama-
tion is not an orthogonal concept. This is possible due to the explicit representation of
sets of assignments. However, as already mentioned, the explicit representation has as
consequence that some formulas are not monitorable. In LARVA [14] it is up to the user
to indicate that an entire monitor can be garbage collected by using acceptance states:
when the monitor enters such an acceptance state it can be discarded, and released for
normal garbage collection. In systems such as RULER [7], LOGFIRE [18] and TRACE-
CONTRACT [6], monitor states get garbage collected the normal way when data struc-
tures are no longer needed. The last variant occurs in MOP [27], where monitored data
values can be structured objects in the monitored program (such as a set, a list, an it-
erator). When such a monitored object is no longer used in the monitored program, a
garbage collector would normally collect it. However, if the monitor keeps a reference
to it, this is not possible. To circumvent this, MOP monitors use JAVA’s so-called weak
references to refer to objects in the monitored program. An object referenced only by
weak references is considered to be garbage by the garbage collector. Hence the object
is garbage collected when nothing or only monitors refer to it.

9 Conclusion

We described a BDD-based runtime verification algorithm for checking the execution of
a system against a first-order past time temporal logic property. The propositional ver-
sion of such a logic is independent of the length of the prefix seen so far. The first-order
version may need to represent an amount of values that can grow linearly with the num-
ber of data values observed so far. The challenge is to provide a compact representation

19

that will grow slowly and can be updated quickly with each incremental calculation that
is performed per each new monitored event, even for very long executions.

We used a BDD representation of sets of assignments for the variables that appear in
the monitored property. While the size of such BDDs can grow linearly with the num-
ber of represented values, it is often much more compact, and the BDD functions of a
standard BDD package are optimized for speed. Our representation allows assigning a
large number of bits for representing the encoding of values, so that even extremely long
executions can be monitorable. However, a lower number of bits is still preferable to
a larger number of bits. We presented an algorithm and its implementation for dynam-
ically reclaiming data no longer used, as a function of all current subformula BDDs,
representing sets of assignments. That is, the specification is not statically analyzed
to achieve this reclamation. Experiments demonstrated that even frequent activation of
data reclamation is not necessarily costly, and in fact in combination with a lower num-
ber of bits needed can reduce the trace analysis time compared to using more bits and
no data reclamation.

We also presented support for numerical relations between variables and constants,
and a new form of quantification over values seen in the trace. Future work includes
support for functions applied to data values seen in the trace, and real-time constraints.
Other future work includes comparison with slicing-based algorithms, as found in e.g.
MOP [27] and QEA [28], which are very efficient, however at the price of some limited
expressiveness.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, J. Tibble, Adding Trace Matching with Free Variables to AspectJ,
OOPSLA’05, IEEE, 345-364, 2005.

2. B. Alpern, F. B. Schneider, Recognizing Safety and Liveness. Distributed Computing 2(3),
117-126, 1987.

3. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, Z. Manna: LOLA: Runtime Monitoring of Synchronous Systems, TIME’05,
166-174, 2005.

4. Apache Commons CSV parser, https://commons.apache.org/proper/commons-csv.
5. H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-Based Runtime Verification, VMCAI,

LNCS Volume 2937, Springer, 44-57, 2004.
6. H. Barringer, K. Havelund, TraceContract: A Scala DSL for Trace Analysis, Proc. of the

17th International Symposium on Formal Methods (FM’11), LNCS Volume 6664, Springer,
57-72, 2011.

7. H. Barringer, D. Rydeheard, K. Havelund, Rule Systems for Run-Time Monitoring: from
Eagle to RuleR, Proc. of the 7th Int. Workshop on Runtime Verification (RV’07), LNCS
Volume 4839, Springer, 111-125, 2007.

8. D. A. Basin, F. Klaedtke, S. Müller, E. Zalinescu, Monitoring Metric First-Order Temporal
Properties, Journal of the ACM 62(2), 45, 2015.

9. A. Bauer, J.C. Küster, G. Vegliach, From Propositional to First-Order Monitoring, Proc. of
the 13th Int. Conference on Runtime Verification (RV’13), LNCS Volume 8174, Springer,
59-75, 2013.

10. R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,
ACM Comput. Surv. 24(3), 293-318, 1992.

20

11. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic Model Check-
ing: 1020 States and Beyond, LICS’90, 428-439, 1990.

12. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The MIT Press
and McGraw-Hill Book Company 1989.

13. J. Chomicki, Efficient Checking of Temporal Integrity Constraints using Bounded History
Encoding, ACM Trans. Database Syst. 20(2), 149–186, 1995.

14. C. Colombo, G.J. Pace, G. Schneider, LARVA – Safer Monitoring of Real-Time Java Pro-
grams (Tool Paper), 7th IEEE International Conference on Software Engineering and Formal
Methods (SEFM), Hanoi, Vietnam, IEEE Computer Society, 33-37, 2009.

15. N. Decker, M. Leucker, D. Thoma, Monitoring Modulo Theories, Journal of Software Tools
for Technology Transfer, Volume 18, Number 2, 205-225, 2016.

16. J. Goubault-Larrecq, J. Olivain, A Smell of ORCHIDS, Proc. of the 8th Int. Workshop on
Runtime Verification (RV’08), LNCS Volume 5289, Springer, 192-206, 2008.

17. S. Hallé, R. Villemaire, Runtime Enforcement of Web Service Message Contracts with Data,
IEEE Transactions on Services Computing, Volume 5 Number 2, 192-206, 2012.

18. K. Havelund, Rule-based Runtime Verification Revisited, Journal of Software Tools for
Technology Transfer, Volume 17 Number 2, Springer, 2015.

19. K. Havelund, D. Peled, D. Ulus, First-order Temporal Logic Monitoring with BDDs, FM-
CAD’17, IEEE, 116-123, 2017.

20. K. Havelund, G. Reger, D. Thoma, E. Zălinescu, Monitoring Events that Carry Data, book
chapter in: Lectures on Runtime Verification - Introductory and Advanced Topics, book edi-
tors: Ezio Bartocci and Yliès Falcone, LNCS Volume 10457, Springer, 61-102, 2018.

21. K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties, TACAS’02, LNCS Vol-
ume 2280, Springer, 342-356, 2002.

22. JavaBDD, http://javabdd.sourceforge.net.
23. J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige, T. Rauhe, A. Sandholm,

Mona: Monadic Second-Order Logic in Practice, TACAS’95, LNCS Volume 1019, Springer,
89-110, 1995.

24. M. Kim, S. Kannan, I. Lee, O. Sokolsky, Java-MaC: a Run-time Assurance Tool for Java,
Proc. of the 1st Int. Workshop on Runtime Verification (RV’01), Elsevier, ENTCS 55(2),
2001.

25. L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE Transactions on Soft-
ware Engineering 3(2): 125-143, 1977.

26. Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical Computer Science 83,
91-130, 1991.

27. P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An Overview of the MOP Runtime
Verification Framework, J. Software Tools for Technology Transfer, Springer, 249-289, 2012.

28. G. Reger, H. Cruz, D. Rydeheard, MarQ: Monitoring at Runtime with QEA, Proceedings of
the 21st International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’15), LNCS Volume 9035, Springer, 595-610, 2015.

29. Scala Parser Combinators, https://github.com/scala/scala-parser-combinators.
30. J. Whaley, D. Avots, M. Carbin, M. S. Lam, Using Datalog with Binary Decision Diagrams

for Program Analysis, APLAS’05, LNCS Volume 3780, Springer, 97-118, 2005.

21

