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Abstract—We propose a method that increases the capability
of a conventional sensor/instrument, transforming it into an
enhanced virtual sensor/instrument. This paper focuses on a
virtual thermal IR sensor based on a conventional visual (RGB)
sensor. The estimation of thermal IR images can enhance the
ability of terrain classification, which is crucial for autonomous
navigation of rovers. The estimate in IR from visual band has
inherent limitations, as these are different bands, yet correlations
between visual/RGB and thermal IR images exist, as different
terrains, which visually may appear different, also have different
thermal inertia. We developed a deep learning-based algorithm
that estimates thermal IR images from RGB images of terrains,
providing the feasibility of the idea with average 1.21 error
[degree].

I. INTRODUCTION

The Mars Science Laboratory (MSL) rover [1] has several
RGB cameras, but no thermal infrared (IR) cameras. RGB
cameras respond to wavelength from about 390 to 700 [nm]
and thermal cameras respond to different wavelength, such as
7-14 [µm] for long-wave IR. MSL has a Ground Temperature
Sensor (GTS), but GTS can get only one pixel that covers 100
m2 area. Sensing/imaging in different bands, to capture high
resolution images, would allow imagery to be used both for
science objectives [2] but also for high-level autonomy, e.g. in
slip prediction [3].

We propose a method that increases the capability of a con-
ventional sensor/instrument, transforming it into an enhanced
virtual sensor/instrument. This paper focuses a method to
estimate thermal IR images from RGB images. Theoretically
it is not possible to deterministically obtain complete ther-
mal information from RGB information. As Fig. 1 suggests,
however, correlations between RGB and thermal IR images
may exist, since terrains that are different (and look different
in visual) also have different thermal inertia (here, thermal
inertia is understood as being a physical property of a material
that represents its resistance to changes in temperature). This
would allow us to take an RGB visual camera input and derive
from it the simulated (estimated) output of a virtual thermal
IR camera.

We present a method to estimate thermal information from
RGB information. Full estimation is impossible, as these
are different bands, yet correlations between visual/RGB and
thermal IR images exist, as terrains have different thermal
inertia.

To see the feasibility of the proposed idea, we propose a
deep learning-based algorithm to estimate thermal IR images
from RGB images of terrains. The proposed method is based
on U-Net [4], which is popularly used in a medical image
segmentation [5] and also was used by the winner of a satellite
image segmentation competition (Kaggle competition [6]).
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Fig. 1. (a) visual and (b) thermal images at 1 pm on Nov 17th. Each terrain
type shows different surface temperature due to different thermal inertia. The
IR image is originally grayscale image, but it is colorized for visualization
purpose.

A. Previous work

To the best of our knowledge, there is no prior work
estimating thermal IR images from RGB images. Instead, there
are many papers for colorizing gray scale images [7] [8] [9]. In
general these methods require to estimate chrominance, since
the luminance is given in the grayscale images. Iizuka et al.
proposed a deep convolutional neural networks (deep CNN)
to directly estimate chrominance values in gray-scale images
[11]. Larsson et al. [12] and Zhang et al. [13] initialized their
networks with pre-trained networks. Limmer et al. proposed a
CNN-based method to colorize near IR images, which requires
to estimate chrominance and luminance [10].

Generally deep learning methods require huge dataset to
train its parameters. In [10] almost 38,495 image pairs are
used. Thus in the case that users do not have enough data
to train the network from scratch, pre-trained parameters with
public dataset such as ImageNet [14] are used. However, since
generally public dataset includes images with huge inter-class
variations, such as cars, humans, balls, etc, the pre-trained
parameters do not efficiently describe features of terrain types,



where inter-class variations are much smaller than the public
dataset. On the other hand, the advantage of U-Net, which we
use in this paper, is that it can train the network with much
smaller datasets.

II. METHODOLOGY

In this section we first explain U-Net, and then the method-
ology used to synthesize IR images from RGB images.

A. U-Net

Overall the architecture of the U-Net consists of a contract-
ing path (left) and an expansive path (right). Each path has
repeated units. The unit on the contracting path (contracting
unit), as shown with light blue rectangles, consists of two 3 ×
3 convolutions, each followed by a rectified linear unit (ReLU)
and 2 × 2 max-pooling. There are two different units on the
expansive path. The first one (expansive unit 1) as shown
with red rectangles consists of two 3 × 3 convolutions, each
followed by ReLU, 2 × 2 deconvolution, and concatenation of
outputs from both deconvolution layer and convolution layer
from the contracting path. Another one (expansive unit 2) is
the last unit of the expansive path as shown with an orange
rectangle has two 3 × 3 convolutions, each followed by a
rectified linear unit (ReLU). Here, in the expansive unit 1,
bilinear up-sample is applied to output of the convolution layer
from the contracting path. This concatenation layer is one of
key ideas in U-Net, it enables the user to train the network
with a small amount of data. Input images into U-Net have 3
channels (RGB), and at the final layer a 1 × 1 convolution
is applied to map 64 channel information at each pixel to the
number of classes.

The loss function LCE of all architectures (CE: Cross
Entropy) is defined as a pixel-wise soft-max over the final
map, followed by the cross-entropy loss function, as define as
follows.

LCE = − 1

|S|
∑

i∈S

N∑

j=1

yij log pij , (1)

where N , |S|, yij , pij are the number of terrain classes
(e.g. sand, soil, rocks, etc), the total number of pixels over
images S, groud-truth distribution at each pixel, and outputted
probability distribution at each pixel, respectively. The loss
function is minimized by a stochastic gradient descent method.

B. Virtual thermal camera

To synthesize thermal IR images from RGB images, we
replace the output annotation in Fig. 2 with thermal IR image.
We use a Mean Squared Error LMSE as a loss function, which
is defined as

LMSE =
1

|S| × C

∑

i∈S

C∑

j=1

(aij − bij)
2, (2)

where C is the number of channels, and aij is bij are thermal
value at each pixel (i, j) of a ground-truth thermal image a
and an output thermal image b.
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Fig. 2. U-Net architecture. ”Cat”, ”C”, ”ReLU”, ”P”, and ”DC” mean
”concatenate”, ”convolution”, ”rectified linear unit”, ”pooling”, and ”deconvo-
lution”, respectively. Relatively thick arrows between ”Cat” and ”C” include
”bilinear up-sample”. ”N” at the final layer show the number of classes. Light
blue rectangles show units of the contracting path (contracting units). Red and
orange rectangles show two different units of expansive paths (expansive unit
1 and 2).
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III. EXPERIMENTS

In this section, we first present a dataset that includes visible
and thermal images, followed by experimental results with the
dataset.

A. Dataset of visible and thermal images

To collect images, we used a RGB camera (FLIR Grasshop-
per 5M) and a thermal camera (FLIR AX65) as shown in
Fig. 3. We collected images at 5 pm; there are 52 images,
obtained by changing the position of the cameras. Figure 4
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Fig. 4. Examples of RGB (top) and IR (bottom) image pairs.

shows examples of captured image pairs. Areas with sand tend
to show lower temperature, due to sand’s lower thermal inertia.
On the other, areas with rocks show higher temperature, as
rocks have higher thermal inertia. The visible and thermal
images are taken by different cameras, so a registration process
between cameras is necessary. After we removed distortion
with estimated camera inner parameters, we applied an affine
transformation with estimated homography matrix as shown
in Fig. 5. Here, the camera parameters and the homography
matrix were estimated with a calibration board with reflectors.
Since the thermal images are aligned into the visible images,
a right area in each thermal image does not have thermal
information (black) (Fig. 5 (b)).
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Fig. 5. (a) An example of undistorted RGB images, (b) a undistorted and
transformed IR image corresponding (a). Right area of (b) has no data (black).

B. Results

We randomly separated the RGB and IR pair images as
follows: 50% for training, 25% for evaluation to determine
parameters, and the rest 25% for test. We categorize the ground
area into 6 terrain types: soil, sand, rocks, bedrocks, rocky
terrain, and ballast. The data size of each terrain type is not
balanced, so we introduce weights to the MSE loss. Here, the
assumption is that each terrain has unique temperature on IR
images and we ignore other factors that change temperature,
such as shades, due to the fact that the amount of shaded

area is small in the dataset. A weight of each terrain type is
defined as the square root of the ratio of number of pixels in
the training dataset. We set weight at each pixel based on its
terrain type, which we manually determined in advance.

In the first experiment, we simply use the MSE loss without
weights. Figures 6 (a) and (b) shows examples of captured
RGB images and its corresponding thermal IR images in test
dataset. Figure 6 (c) shows estimated thermal IR images from
RGB images. Mean and standard deviation of temperature
difference are 2.3 degree and 3.8 degree (Table I (a)). From
these results, lower and higher temperature areas are not
estimated well.

In the next experiment we used the MSE loss with weights.
Figure 6 (d) shows estimated thermal IR images from RGB
images. Mean and standard deviation of temperature difference
are 1.8 degree and 3.7 degree (Table I (b)). Compared with
the results without weights (Fig. 6 (c)), Fig. 6 (d) shows better
performance and we can see a feasibility of estimating thermal
IR images from RGB images.

TABLE I
MEAN SQUARE ERROR (MSE) AND STANDARD DEVIATION (STDDEV) OF

ESTIMATED THERMAL IR IMAGES BY (A) U-NET WITHOUT WEIGHTS AND

(B) U-NET WITH WEIGHTS.

MSE stddev
(a) U-Net without weights 2.3 3.8

(b) U-Net with weights 1.8 3.7

IV. CONCLUSION

In this paper we proposed the idea of estimating thermal
IR images from RGB images, and we showed its feasibility
based on U-Net. There are many parameters to determine tem-
perature of terrain surface, such as thermal inertia, direction to
the Sun, geological condition, etc. Thus the future work will
include these parameters in the model.



(a)

(d)

(c)

(b)

0 50 [C]

Fig. 6. (a) Examples of RGB images in test dataset, (b) ground truth thermal IR images corresponding to (a), (c) estimated thermal IR images WITHOUT
weights, and (d) estimated thermal IR images WITH weights. Thermal IR images are colorized for visualization purpose.
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