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United States Energy Flow

Estimated U.S. Energy Use in 2014: ~98.3 Quads . 'ﬁaa‘{fgf,g?ﬂ'ﬁ‘éﬁgt"o%e

Net Electricity
Imports

Solar | 0.170
0.427

Nuclear Electricity
8.33 . Generation
384 Rejected
Energy

Ve 594

12.4

¢  \Waste Heat
To Be
“Harvested”

59.4 Quads
c°ms|:ng%rcml : i ° Up ~ 5QuadS

Services

389 From 2009

Wind
1.73 Residential
11.8

Industrial
24.7

Trans-

portation

Petroleum 2e
34.8

Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

JPL National Aeronautics and Space Administration



Terrestrial Waste Energy Recovery

» Thermoelectric Systems Considered a Prime Energy Recovery Technology Candidate /
Option in Many Terrestrial Applications

> Terrestrial Energy Recovery Goals are Often Tied to:
» Energy Savings
» Environmental Savings and Impacts
» Maximizing Conversion Efficiency
» Maximum Power Output

» However, JPL is Currently Working on System Designs Where the Critical Design
Metric is Maximizing Specific Power (W/kg)

» Knowing Its Relationship to Maximum Power or Efficiency Points is Key
» Ty =823 K; T,y =273 K

» System Analysis Shows This Design Metric Requires High Power Flux and High Heat
Flux TE Modules

» Cost-Effectiveness and Performance Are Constant Requirements

Jet Propulsion Laboratory
JPL California Institute of Technology



TE System Design Regime Results
T,n=823K, T 4=273-323K

» High TE Device Specific Power
Regime Identified

— Coincides with High Efficiency
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/4 Module CAD Description

» SolidWorks CAD Modeling

« SolidWorks CAD Information Transferred into Several FEA Environments
 Electrical/Thermal/Thermoelectric Analyses
 Structural Stress/Thermal Expansion Analyses

Cold Side

Segmented

Hot Side

28 Couple Module

Series/Parallel Connection

Critical Interface Layers Designed In
« Couple Electrical Isolation
« Material Diffusion Layer
« Bonding Metallization Layer
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1/ Module FEA — High Resolution FEA Guiding Design
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Quarter Module |Bonding Process Development

All Skutterudite Module o

Surface etching of T.E. elements for
cold side bonding

Bonding of T.E. elements onto hot side
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Big Success!
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Module Fabrication Demonstrated & Module
Completed for Testing

« DARPA module #6 after the aerogel process (removed excess aerogel)
« Module Aerogel process refined

« TE module generally looked very good and as expected

 Fabrication process now set for this module design

« TE module went to testing:
— Voc
— |-V curve
— Thermal interfaces

~1.35 cm
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Y2 TE Module Technical Challenges

 Temperature Drops Across Hot and Cold Side Interfaces.
O Average Electrical Contact Resistance Between Components.

Temperature Drop 2

Temperature Drop 1

Analytic Approach

O Temperature Drops due to Interface Thermal Resistance are Estimated Based on Measured
Value of Open Circuit Voltage (Voc) and Measured T,4. (Verified via testing)

O Hence, T, 4is Kept Constant and T, is varied until Calculated V,. matches Measured Value.

O Average Electrical Contact Resistance Between Components is Subsequently Calculated

Based on Measured I-V curve.
JPBL



TE Module Testing
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TE Module Testing

» Latest TE module #6 test data looking even better
— Best module so far

— Every module we build and test now breaks new
record at JPL

 Full I-V curve

* Module measured resistance via I-V curve = 64.1
mQ - Good compared to expected 60 mQ

- Power output was 11.5 W at T, ~425°C and T, ~ Module Mounted in Test System
350C Module #6 Test Performance
*  Best Ever for JPL All-SKD TE Module el
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Y2 Module I-V and Power Curves

Module #6 Test Performance
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« Excellent Agreement Between Experimental Data and Model Predictions
« Electrical Contact Resistance Between Components ~ 5.9 mOhm-cm? - This is quite

JPPL reasonable



Summary & Conclusions

JPL

High power density all-skutterudite TE modules under development and
demonstration at JPL

Module requirement driven from high specific power system-level
requirement in current terrestrial application

Requirements for TE module design driven by efficiency-power-specific
power-heat flux map

High power density all-skutterudite modules showing excellent power
density
« Power flux > 2.1 W/cm? (Module Footprint Area)

» Power flux ~5.1 W/cm? (TE Element Area)

 T,~425°Cand T, ~ 35°C

» Highest Power — Highest Power Flux All-SKD TE Module ever at JPL
Excellent agreement between experimental data and model predictions

Module fabrication and testing on-going to improve performance even
further

Next Step is high power density segmented TE modules 10
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