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Why	Risk-Ware	Autonomy	in	Space?

• Current	ground-in-the-loop	operation	too	
slow
– E.g.,	Mars	rovers:	<100	m/Sol	(<50	m/Sol	most	of	
the	times)	

• Most	accessible	locations	visited	
– Next	frontier:	subsurface
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Caves	on	Moon	and	Mars
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Caves	on	Moon	and	Mars
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In	2005,	when	Cassini visited	a	small	
Saturnian moon,	Enceladus…



Subsurface	Ocean	of	Icy	Moons
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Challenges	for	Subsurface	Exploration

• No	orbital	reconnaissance
• Limited	communication	(radio	does	not	
propagate	in	water)

• Limited	visibility
• Risk,	uncertainty,	unknowns	
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Risk-Aware	Autonomy:	Overview

Autonomy	adapts	its	behavior	depending	on	the	acceptable	level	of	risk

Ground	operator

Keep	the	risk	low.

…

Let’s	stay	away	from	the	
cliff…	it	is	too	dangerous.

…

Let’s	check	out	what’s	
down	there…

You	can	take	more	risk.



Demo
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Problem being solved: 
Develop Resilient Spacecraft Executive that:
• adapts to component failures to allow graceful 

degradation
• accommodates environments, science 

observations, and spacecraft capabilities that are 
not fully known in advance

• makes risk-aware decisions without waiting for slow 
ground-based reactions

Why this is important to JPL:
• Enables robotic explorations of harsh, remote, and 

inaccessible destinations, e.g., Venus and KBOs
• Reduces operation cost without reducing safety

Team Members

Resilient Risk-Aware Autonomy for the Exploration 
of Uncertain and Extreme Environments*

FY15 Accomplishments:

External collaborators
Prof. Richard Murray
(Funded by KISS)

Prof. Brian Williams
(Funded by KISS)
Dr. Richard Camilli
(Funded by KISS)

•Identified the science drivers for RSE capabilities to be 
demonstrated for a selected set of reference missions;
•Developed an architecture specification for the RSE and 
modeled the architecture formally in SysML
•Developed and integrated the initial algorithms used in the 
architectural layers of RSE;
•Created an integrated RSE capability ready for deployment in 
software simulation and on rover/AUV hardware platforms that 
is compatible with the Robot Operating System (ROS) 
middleware software;
•Deployed RSE on multiple rovers and AUV systems, in 
simulation and on hardware.

FY15-16	RTD/KISS Co-PIs:	Mitch	Ingham	and	Richard	Murray

AUV	demo	by	MIT	and	WHOI
Demo	on	ATRV	rover	and	
ROAMS	simulator

pSulu

Algorithms

tBurton

TuLiP

RRT*

PID ctl

Kalman filter…

RSE architecture

Habitual

Deliberative

Reflexive

Estim
ator

Hardware

…

Hardware
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Project objective: Develop an autonomy that:
• Makes	optimal	decisions	based	on	risk
• Manages	risks	at	multiple	levels	of	abstraction
• Shares	the	responsibility	of	managing	risks
• Combines	the	strengths	of	each	other	synergistically

Why important to NASA:
• Exploring astrobiologically important targets (e.g., 

caves on Mars, subsurface ocean of icy moons) 
requires risk-aware on-board decision makings 
due to significant level of uncertainty and inability 
of orbital reconnaissance 

• Future manned mission beyond LEO requires an 
Earth-independent system with a few astronauts 
cooperating with automated subsystems

Co-Investigators
• Prof. Missy Cummings (Duke)
• Prof. Behcet Acikmese (U. Texas at Austin)
• Prof. Ufuk Topcu (U. Texas at Austin)

Risk-Aware,	Human-Cooperative	Autonomy
Sponsor:	ONR					PI:	Masahiro	Ono	(347E)				ono@jpl.nasa.gov

Work	funded	by	ONR’s	Science	of	Autonomy	Program

• Human specifies goals AND 
acceptable level of risk through 
an interactive interface

• Correctness guaranteed by 
chance-constrained temporal 
logic (CCTL) planner

• High-level state space 
representation is obtained 
through stochastic 
reachability/coontrollability (RC) 
set generation

• High-level plan encoded into a 
chance-constrained optimal 
control (CCOC) problem and 
executed by CCOC Planner

Technical	Approach:

RC-based spacecraft guidance Human interface for 
monitoring uncertain system

Safe Autonomous Rendezvous with CCOC



• Goals
– Develop	an	autonomous,	decentralized	path-planning	and	scheduling	algorithm	that	optimally	balances	safety	and	efficiency	based	

on	user’s	preferences

• Approach
– Risk-constrained	optimal	path	planning	that	allows	users	to	specify	a	comfortable	level	of	safety

• Example	1:	A	risk-averse	passenger	flight	maximizes	safety	by	avoiding	crowded/turbulent	air	space

• Example	2:	A	time-critical	military	flight	minimizes	flight	time	by	taking	extra	risk	to	go	straight	through	crowded/turbulent	air	space

– Market-based,	decentralized	air	traffic	control	that	guarantees	collision	avoidance	and	maximizes	social	welfare	through	bilateral,	
automated	negotiations

• A	less	time-critical	flight	makes	way	for	a	time-critical	flight	by	receiving	compensation

– The	proposed	technology	is	built	upon	an	existing	risk-sensitive	plan	executive,	probabilistic-Sulu	(p-Sulu)	[1],	which	has	been	
developed	by	MIT/Boeing	and	demonstrated	on	MIT’s	SPHERES	test	bed	[2]

Risk-aware	Personal	Transportation	System

(Left)	Risk-aware	path	planning	
for	personal	aerial	vehicles	by	
p-Sulu [1]
(Top)	Demonstration	of	p-Sulu	
by	MIT’s	SPHERES	test	bed [2]

[1]	M.	Ono,	B.	Williams,	L.	Blackmore.	“Probabilistic	Planning	for	Continuous	Dynamic	Systems	under	
Bounded	Risk.”	Journal	of	Artificial	Intelligence	Research,	2013
[2]	C.	Jewison,	B.	BcCarthy,	D.	Sternberg,	C.	Fang,	D.	Strawser.	“Resource	Aggregated	Reconfigurable	
Control	and	Risk-Allocative Path	Planning	for	On-orbit	Assembly	and	Servicing	of	Satellites.”		
Submitted	to	AIAA-GNC,	2014

Work	performed	at	MIT	with	Prof.	Brian	Williams;	Funded	by	Boeing		
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Hidden	Valley,	Sol	712



14



• Visually classifies terrain types and features 
• Based on deep convolutional neural network
• Trained by sparse labels generated by humas
• Classifies every pixel on images
• Demonstrated on a test rover in Mars Yard 

(off-board test)
• On-board variant being developed in RTD

SPOC	(Soil	Property	and	Object	Classification)
PI:	Masahiro	Ono	(347E)				ono@jpl.nasa.gov

SPOC-H:	HiRISE	deployment	for	M2020	

Smooth regolith Smooth outcrop Fractured outcrop Sparse linear ripples Rough outcrop

Crater Rock field Dense linear ripples Polygonal ripples Deep sand Scarps

Training Data Output

Work	by	Brandon	Rothrock

SPOC-G:	NAVCAM	deployment	for	MSL	
Dingo	Gap

Hidden	Valley

RSVP	integration

Sand Smooth Outcrop
Rock	field Outcrop	w/	rocks

Work	by	Ryan	Kennedy

Mars	Yard	Demo

Work	by	Kyon Otsu



Hidden	Terrain	Inference	with	Gaussian	Process
• On-line	learning	of	kernel	to	capture	the	“pattern”	of	terrain	
• Gaussian	process	regression	with	the	learned	kernel	to	estimate	the	

occluded	terrain
• Use	quad-tree	to	partition	the	state	space	with	varying	resolution
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Volcanic	fissure

Mars	terrain

Work	by	Clark	Zhang	(PhD	student	@	UPenn)



Advanced	Path	and	Motion	Planning
Masahiro	Ono	(347E)				ono@jpl.nasa.gov

• Safe	path/motion	planning	algorithms	
for	environments	with	significant	risk

• Motion	planning	with	wheel	
placement	for	navigating	through	
highly	cluttered	environment

• Sequential	Dijkstra	Algorithm	for	co-
optimizing	route	and	goals

• Planning	with	spacio-temporally	
extended	graph	for	cooperative	multi-
vehicle	path	planning
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Multi-vehicle	coordination

Work	with	Greg	Droge,	Amir	Rahmani,	et	al Work	by	Kyohei Otsu

Motion	planning	for	cluttered	environment

Co-optimization	of	goal	and	route	for	
M2020	landing	site	traversability analysis



MTTTT	(Mars	2020	Traversability Tools)
M.	Ono,	B.	Rothrock,	E.	Almeida,	H.	Gengle,	F.	Calef,	T.	Solomon,	R.	Otero,	A.	Huertas,	A.	Ansar,	M.	Heverly

• Supports	M2020	landing	site	selection	
• Evaluates	terrain	type	on	HiRISE	by	SPOC	
• Evaluates	rock	abundance	through	automated	

rock	detection
• Optimizes	the	combination	of	ROIs	(regions	of	

interest)	to	visit	and	route	by	Sequential	Dijkstra	
Algorithm

• Performs	Monte	Carlo	simulation	to	obtain	the	
probability	distribution	of	driving	distance	and	
time	to	satisfy	the	mission	requirements	
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Terrain classes Rock abundanceDEM/Slope ROIs

Raw HiRISE/CTX images

Traversability Analysis

User	interface	with	MMGIS

85	sols

CDF	curve	showing	the	
likelihood	of	achieving	
mission	goals	with	a	
given	driving	time	and	
distance	



Project objective:
Enable Autonav (autonomous navigation) to safely
traverse over more difficult terrain (>10% CFA rock 
abundance, mixed terrain types) at a faster rate (>80 
m/hr, ~5x faster than MSL) 

Technical Approach:
• Situation awareness: risk evaluation based on visual 

recognition of terrain type and topology (e.g., avoid 
>5 deg slope on sand dunes)

• Advanced motion planning for cluttered environment: 
remove conservatism by straddling over small rocks

• Extensive V&V on test rovers in JPL’s Mars Yard
*Work funded by JPL’s R&TD program 
Why important to NASA:
• Scientifically interesting sites tend to have high 

rock abundance and complex topology (e.g., 
Jezero Crater, NE Syrtis, Melas Chasma)

• M2020 and Sample Retrieval and Launch rovers 
would benefit from Autonav because they are 
required to traverse 60-80 m/hr on average

• Departure from the current costly, Earth-
dependent operation model (e.g., ~$30M per 
rover per year for MSL) is necessary to expand 
the scale of surface operation 

• Future human mission would be likely to 
operate multiple ISRU rovers before the 
arrival of astronauts

Next-Gen	Autonomy	for	Mars	Rovers
PI:	Masahiro	Ono	(347E)				ono@jpl.nasa.gov

Path	planning	with	
wheel	placement

Machine	learning-based	terrain	classification

V&V	with	
test	rovers

FY15	Mars	Yard	Demo	(Video)
(Terrain	classification	w/	co-training)
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Journey to the Center of  Icy Moons
Masahiro	Ono(PI),	Mitch	Ingham,	Tara	Estlin,	Aaron	Parness,	Karl	Mitchell,	Kevin	Hand

Jet	Propulsion	Laboratory,	California	Institute	of	Technology

© California Institute of Technology. Government sponsorship acknowledged.Rappelling

Concept:	Icy-moon	Cryovolcano Explorer	(ICE)

Vent	is	not	only	a	gateway	to	the	subsurface	ocean,	
but	also	a	potential	habitable	zone.	(Figueredo et	al.	2003)	

↑Proposed	ice	gripper	
with	claws	(Carpenter)
←LEMUR	climbing	
robot	(Parness	et	al)

Low	risk	threshold HIgh risk	threshold

Risk-aware	autonomy	demonstrated	on	a	rover
Pre-decisional: for information and discussion purposes only



Risk-aware	Machine	Learning	for	Resilient	Space	Exploration	

• Big	goal:	paradigm	shift	in	robotic	space	exploration	- from	robust	to	adaptive
• Challenges:	

– Unpredictability	in	robot’s	behavior:	how	to	guarantee	safety?
– Machine	learning	needs	a	lot	of	data,	but	robot	has	to	adapt	to	new	environment	

quickly	(e.g.,	Venus	lander	would	last	only	for	a	few	hours)
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Co-PIs:	Yisong Yue	and	Hiro	Ono

Safe	exploration

I	know	that	mountain	is	
safe	for	climbing,	and	I	
can	learn	about	the	

safety	over	a	wide	area

Hybrid	Model-Based	and	
Model-Free	Planning



Backups
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Comet	Hitchhiker

Copyright	2015	California	Institute	of	Technology.	U.S.	Government	sponsorship	acknowledged.	Image	credit:	Cornelius	Dämmrich	(zomax.net)

FY15	NIAC	Phase	I	Study

Paper	in	the	proceedings:
“The	Hitchhiker’s	Guide	to	the	Outer	Solar	System”

Masahiro	Ono
Jet	Propulsion	Lab,	Caltech

• Hitches	rides	on	small	bodies	by	using	a	
harpoon	and	an	extendable	momentum	
exchange	tether

• Would	enable	rendezvous	with	small	
bodies	in	the	outer	Solar	System	(e.g.,	
KBOs,	Centaurs)	

• 1.5	km/s	hitchhike	feasible	with	Zylon
tether;	10	km/s	enabled	by	CNT	tether
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SMART
Space	Mission	Architecture	and	Risk	Analysis	Tool

Support high-level trade study for a multi-
mission campaign, such as Mars Sample Return

• Perform trade-offs between success probability, 
utility (e.g., science return), and cost

Deliver capabilities to
• Capture high-level problem structures while 

providing an  interface to detailed analysis
• Marry intuitive/qualitative arguments with 

mathematical rigor
• Discovers hidden/unintuitive causal links 

between seemingly isolated factors

Objective

• Represents dependencies between design params
and mission outcomes by logical formula

• Supports fuzzy and probabilistic computation
• Provides Simulink-based GUI to build models 
• Performs symbolic computation of Boolean algebra
• Any fuzzy operators (e.g., Zadeh operators) as well 

as probability operation can be used 

Approach
SMART Model of MSR Sensitivity analysis

1% increase in the 
reliability of rover 
mobility results in 
0.35% increase of MSR 
success probability

Risk assessment

Analysis example on Mars Sample Return

SMART Model
Captures high-level 
mission architecture
by logical formula

System Architecture

Detailed 
models of 
mission 
components

Monte Carlo analysis

Fuzzy/probabilistic
computation engine

User
GUI

Analysis
results

Masahiro	Ono
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Darts Lab                                                                                                                    Mobility & Robotic Systems - 347

CEMAT: Risk-based EDL & mobility analysis
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• Combined EDL-Mobility Analysis Trade Study Tool
• Optimizes landing ellipse, surface path, and EDL control policy 

within a given bound on the probability of landing failure

Input
• Terrain (hazard/rock/slope maps)
• Science targets
• Lander/rover design params (control 

authority, rover size, etc)
• Bound on the probability of landing 

failure (e.g., 1%)

Output
• Expected driving distance to visit a 

specified number of science target
• Resulting probability of landing failure
• Landing ellipse
• Optimal surface path
• EDL control policy

CEMAT


