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Did Comet and Asteroid Bombardment
Trigger the Origin of Life on Earth?

What was the Composition of Comets
around 4 Billion Years ago?

Did Cometisimals Retain or Lost
their Memory of Interstellar Ice Grains
during the Protoplanetary Stage?
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%ﬁ ,? ¢Earth, Comets & Asteroids, and Life
a -
= Water & Organic Matter delivered to Earth by Comets/Asteroids ~4 Billion Years Ago
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Did Organics Survive Comet Entry and Impacts on Earth?
Do we fully understand Comets? (Deep Impact, Epoxi, Rosetta)
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Zlndication that Comets brought Xe to Earth

Xenon isotopes in 67P/Churyumov-Gerasimenko show that
cometsccontributed to Earth’'s atmosphere >

by B. Marty, K. Altwegg, H. Balsiger, A. Bar-Nun, D. V. Bekaert, J.-J. Berthelier, A.

Bieler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S. A. Fuselier, S.

Gasc, T. I. Gombosi, K. C. Hansen, M. Héssig, A. Jackel, E. Kopp, A. Korth, L. Le

Roy, U. Mall, O. Mousis, T. Owen, H. Reme, M. Rubin, T. Sémon, C.-Y. Tzou, J. H.
Waite, and P. Wurz
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nterstellar Ice Grains: Loaded with Organics

How much ice-grain (not gas-grain)
chemistry occurred in the ISM/DMC
by Cosmic Rays, UV, e~ ?
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Birth of a Sun (Protoplanetary Disk)
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(from Nuth, J. A., 2001, Amernican Scientist, v. 89, p.230.)
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Questions: Pre KBO Journey of Cometisimals
- i ')' . ._:.‘ v 7 i k& .

We need observational data, lab work, and modeling to answer:

Shock Waves:
How far (10 AU?) and how much heating (up to 150K?)

Lateral (inward and outward) movement of gas, dust, and ice?
Vertical transport from the radiation edge into the midplane?
Crystalline vs. amorphous silicates?

Gas accretion on the dust?

Klaus Jokers and Maria Drozdovskaya
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“sf\ d” The Journey of an Interstellar Ice Grain

>

KBOs # comets In_terstellar Ice
Grain (amorphous)

Complete Solar Nebula &
Sublimation and Protoplanetary
Re-accretion of Disk
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Loss of Super
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C We need Tracers
Present-day Comets d of Each Pathway
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Outline

Comet — Physical Composition

Comet - Chemical Composition

Comet — Molecules and Ice-Phase as
Tracers of a Comet’s Evolution History
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Comet — Physical Composition

. K

Physical Composition of Comets
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Dust/Ice = 0.4 — 2.6; Porosity = 75 -85%

Density = 532 &= 7 kg m™3

Crystalline water-ice = 920 kg m™3
Amorphous water-ice = ~500 - 800 kg m™3
Carbonaceous chondrites = ~3 to 3.7 kg m™3

Surface Thermal Inertia:85+35 J m2K-1s-1/2

Thermal gradient?
How Deep to reach <30 K?
Thermally Equilibrated to the Core?
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Physical Properties of Comets
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Science, 349, aaa9816, 2015

COMETARY SCIENCE

The landing(s) of Philae and
inferences about comet surface
mechanical properties

Jens Biele,'* Stephan Ulamec,' Michael Maibaum,' Reinhard Roll,* Lars Witte,>

Eric Jurado,’ Pablo Muiioz,”'?> Walter Arnold,'® Hans-Ulrich Auster,® Carlos Casas,”'>
Claudia Faber,* Cinzia Fantinati,! Felix Finke,! Hans-Herbert Fischer,! Koen Geurts,’
Carsten Giittler,? Philip Heinisch,® Alain Herique,® Stubbe Hviid,* Giinter Kargl,’
Martin Knapmeyer,* Jorg Knollenberg,* Wlodek Kofman,® Norbert Komle,”

Ekkehard Kiihrt,* Valentina Lommatsch,' Stefano Mottola,*

Ramon Pardo de Santayana,”'> Emile Remetean,® Frank Scholten,*

Klaus J. Seidensticker,* Holger Sierks,” Tilman Spohn*

The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko,
was delivered to the cometary surface in November 2014. Here we report the precise
circumstances of the multiple landings of Philae, including the bouncing trajectory and
rebound parameters, based on engineering data in conjunction with operational instrument

data. These data also provide information on the mechanical properties (strength and layering) ~2 O m I f‘t
of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft C g ra n u a r S O

surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top
Below hard crust

of a more rigid layer. The final landing site, Abydos, has a hard surface.

How thick is the crust — cm range or m range?
If no hard-crust, can other properties also be accounted for?

© 2017 California Institute of Technology. Government sponsorship acknowledged.
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"tane0us UV & IR Absorption + Fluorescence

.E’yrene in HZO Ice‘
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Phase Transition
Processed ice ™~ 1m

A Unprocessed primordial ice >1m
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= "Hys?cal Properties: Critical Work Ahead

Thermal Modeling/Lab-Work of Comet Nucleus

Thermal Conductivity

Thermal Wave Propagation
Thermal Equilibrium at Meters Depths

Near Surface Ice/Dust Hardness
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Comet — Chemical Composition

. :-' .. . .._ i - ‘." » ,

Chemical Composition of Comets

© 2017 California Institute of Technology. Government sponsorship acknowledged.
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g Similar Composition:

__=Comets angd Interstellar-lce Grains,

Comet Composition (Hale-Bopp)
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~ ¥ _.From Simple to Complex Organics

Complex Organics Delivered by Comets
and Origin of Life
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,%; fstandmg Prebiotic Chemistry in Comets
At Murthy S Ice Spectroscopy LLab (ISL) @F JPL

Understandmg intricate
details of how biomolecules
could have evolved or
degraded in Interstellar Ices

765
@& | (Origin of Life), Comets, and
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on other Solar System
Bodies.
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=< Molecules, Radiation, and Temperature

e £ - . - ..."-.'..’:
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Isotoplc Labelmg CH;OH:NH; ice
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44 m/z, CH,NO"
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~asa=#llolectiles found in interstellar ice analogs
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of joxyrﬂethylene (POM) Temperature Tracer
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Molecules and Ice-Phase as
Tracers of a Comet’s Evolution
History

© 2017 California Institute of Technology. Government sponsorship acknowledged.
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. Molecular Tracers — Database Needed

S, — Observed by ROSINA of Rosetta in 67P/C-G
(Interstellar Ice needs to be retained?)

OCS vs. H,S (more in 67P/C-G vs. PPD) — Temperature?

Lack of Observation of POM (Polyoxymethelene)
in 67P/C-G and in the Labwork done at <100 K.

Correlated co-existence of Complex Organics Database:
e.g.: formamide and formaldehyde
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D/H Ratio As a Tracer — Careful

= We should be careful with D/H ratio as a tracer

- Gas-Phase D/H alone may be distorted
- D/H ratio of solid may be enriched in D
- Photochemical (radiation) chemistry could alter D/H ratios.

Nuclear isotopes are better Tracers(C,O, Ar, Kr, Xe, N, etc.)

~ 2S-LAIMS of anthracene in D,0 ice I 1

at 5K upon hydrogen lamp irradiation
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Cometary Nuceus
Amorphous,or Crystalline

A Comet’s Nucleus — What is it?
Amorphous, Crystalline, or Crystalline with Clathrates?

© 2017 California Institute of Technology. Government sponsorship acknowledged. 30




«“Macroscopic Amorphous Ices in the Lab:
__Simulating Interstellag & €omet Ices

150 K Deposition 5 K Deposition
(Crystalline) (Amorphous)
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2" Amorphous to Crystalline — Exothermic?
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Robert Wagner and Murthy Gudipti (2013) to be published
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tHow Primitive is a Comet’s Interior?
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g 'ryogenlc Comet Nucleus Sample Return

.:‘. ol -..’

Ultimate Answers to:
Amorphous, Crystalline, Or Clathrate Comet Nucleus?
Co-existence of supervolatiles and water-ice from ISM?

Will be answered ONLY through <40 K Sample Return!

CCNSR!
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‘ Conclusions
Retention of Interstellar Amorphous Ice Grain
Structure and Composition in Cometary
Nucleus Explains ALL Observations

Physical parameters on their own may not constrain
cometary interior composition models.

Chemical composition from rare-gas isotopes to complex
organics should be used as tracers to further constrain the
modeling studies.

lce phase: amorphous, crystalline, clathrates (low-temp or
high-temp??) along with the thermal evolution of ice phase
of cometary precursors from protoplanetary to present-day.
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Post-Rosetta Cometary Science

.:.‘ . ...';.'.':

Dig Deeper and Get the Cryogenic Samples

Better Understanding of Protoplanetary Disks
(JWST?)

Better Thermal and Radiation Evolution Modeling
of Cometary Nucleus.

How were the cometary nuclei @ Late Heavy
Bombardment Time ~ 4 BY ago?
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lee Spectroscopy Lab (ISL) Crew 2017
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Thank You
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