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Abstract — The emergent technology of system-on-chip (SoC) 
devices promises lighter, smaller, cheaper, and more capable 
and reliable space electronic systems that could help to unveil 
some of the most treasured secrets in our universe. This 
technology is an improvement over the technology that is 
currently used in space applications, which lags behind state-
of-the-art commercial-off-the-shelf (COTS) equipment by 
several generations. SoC technology integrates all 
computational power required by next-generation space 
exploration science instruments onto a single chip. This paper 
describes hardware/software co-verification tools for the 
Xilinx Zynq-based control and data handling system that 
have been developed at the Jet Propulsion Laboratory (JPL) 
for visible-infrared imaging spectrometers. The system 
acquires and compresses images in real-time, in addition to 
programming the spectrometer (frame rate, exposure time), 
focus step motor, and heaters and reporting telemetry. 
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1. INTRODUCTION 
Hyperspectral images are three-dimensional data sets, 
where two of the dimensions are spatial and the third is 
spectral (Figure 1). They can be regarded as a stack of 
individual images that represent the same spatial scene 
viewed in a distinct, narrow part of the electromagnetic 
spectrum. The Airborne Visible/Infrared Imaging 
Spectrometer-Next Generation (AVIRIS-NG [16]) 
instrument is an example of an instrument that can acquire 
such imagery. Hyperspectral imagery can also be acquired 
from spacecraft. Because one hyperspectral image can be 
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comprised of hundreds of spectral bands, it can represent a 
large volume of data. Future spacecraft that acquire 
hyperspectral imagery [26] may have modest bandwidths 
available to transfer the data to the ground, and there is 
much interest in compressing the data efficiently [1][2][3]. 

 

The JPL-developed Fast Lossless hyperspectral 
compressor [23] is a low complexity compression 
technique. The compression effectiveness is derived from 
an adaptive filtering method. The technique is currently 
implemented on both software and hardware platforms for 
various space applications. In particular, the algorithm has 
been programmed on a Field Programmable Gate Array 
(FPGA), which is a hardware platform that can be used in 
space for data processing. The FPGA implementation is 
capable of compressing data in real-time as it is acquired.  

Hybrid System-on-Chip (SoC) devices that embed one of 
the world's most energy efficient processor (ARM Cortex-
A9 [8]) and the latest and most powerful FPGA 
architecture (Xilinx 7-series [9]) into a single chip (Xilinx 
Zynq [10]) promise new opportunities due to the 
performance, power consumption, weight and volume 
benefits they bring. Indeed, programmable logic and 
processors are usually combined in most spacecraft 

Figure 1. An example of a hyperspectral 
data cube: Pearl Harbor, Hawaii, taken by 
the AVIRIS instrument 
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subsystems as separate components distributed along one 
or several circuit boards [11][12]. NASA and other space 
agencies are considering SoC technology for its high 
computation capabilities and power efficiency, hoping to 
pave the way for future space exploration missions that are 
becoming so performance-demanding that currently 
available space-grade technology (e.g., RAD750 [13]) 
cannot meet their needs[24]. Despite the fact that currently 
there are no space-qualified SoC parts, NASA is testing 
commercial Xilinx Zynq SoC devices in the International 
Space Station (ISS) as well as in precursor CubeSats 
operating in Low Earth Orbit (LEO), where the exposure 
to radiation is limited [19][20][21][28]. 

The complexity of hardware, software and HW/SW 
integration that arises from the convergence of so much 

functionality in such small hybrid SoC devices has driven 
both hardware and software innovation at almost break-
neck speed, while the development methodology that 
brings hardware and software together lags behind. 
Sequential development, with software development 
waiting for available hardware, is still the prevailing norm. 
But sequential development often fails to deliver quality 
products within the short windows that rule the faster, 
cheaper and robust space missions today [7]. A more robust 
systems engineering approach is to have both HW/SW co-
developed and genetically linked. To help in the parallel 
agile development of hardware and software for SoC 
technology [14], hardware/software co-verification tools 
have been developed for the hyperspectral imagers. These 
tools make sure that embedded system software works 
correctly with the hardware, and that the hardware has been 
properly designed to run the software successfully before 
deploying the image spectrometers in expensive space or 
airborne missions [5]. One of the co-verification tool is 
LiveView [4]. It was initially designed for real-time 
calibration of focal plane arrays. It is performing real-time 
analysis of images acquired through the Camera Link 
interface of the hyperspectral camera. This calibration 
analysis is used to identify sources of electronic noise and 
interference in the imaging spectrometer and to 
characterize the FPA [15]. In the co-verification process, it 

is detecting errors in the firmware or software 
implementations. 

This paper presents two techniques of hardware/software 
co-verification for instrument avionics for hyperspectral 
spectral imagers: on-line and off-line. Section 2 presents 
the SoC for imagers. Section 3 presents the on-line 
verification tool. The tool controls the instrument to 
perform all the required functionalities and recognizes and 
handles unexpected behavior. It is used as ground support 
equipment (GSE) connected to the spectrometer and its 
avionics. Section 4 presents the off-line verification tool. It 
is parsing the data acquired by the spectrometer. Its goal is 
to guarantee that the raw data are consistent to be processed 
for calibration and analysis data processing. 

2. SOC INSTRUMENT AVIONICS 
The SoC instrument avionics performs data acquisition, 
cloud-screening and compression computing system for 
hyperspectral imagers (Figure 2). It is implemented on the 
Xilinx Zynq-based custom Alpha Data hardware assembly 
which fits into a 120mm by 190m by 40mm assembly and 
uses 9 watts at peak performance (Figure 3) [25]. The 
computing element is a Xilinx Zynq Z7045Q which 

Figure 2. System-on-Chip instrument avionics architecture for hyperspectral imagers 

Figure 3. System-on-Chip Instrument 
Avionics for Hyperspectral Imaging 

Systems 
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includes a Kintex-7 FPGA and dual-core ARM Cortex-A9 
Processors. 

Hyperspectral images are acquired, screened for 
atmospheric clouds [27], and compressed (either losslessly 
or lossily) in real-time using JPL’s “Fast Lossless 
Extended” (FLEX) compressor [22], implemented into the 
Programmable Logic (PL) of the Zynq SoC, and sent to on-
line HW/SW verification tools either through Camera Link 
(LiveView[4]) or LVDS protocol (cl3_console). In 
addition the PL interfaces with Focus Step motor, 32 
temperature sensors, 12 heaters and an IMU/GPS device 

providing inertial/position information and time 
synchronization with GPS or UTC time. The processing 
system (PS) of the Zynq SoC implements Command and 
Data Handling to program the Hyperspectral Camera 
(frame rate, exposure time), acquires telemetry 
(temperature, pulse-per-seconds counts, frames count), 
control heaters, focus motor and data flow inside the PL. 
The PS interfaces with the Real-Time Cmd&Tlm 
(p2serialcmds) performing on-line HW/SW verification. 

The on-line HW/SW co-verification tool allows the 
parallel agile development of the SoC platform while the 
off-line tool provides a method to verify the integrity of the 
ancillary data included in each image. 

3. ON-LINE DATA VERIFICATION 
The on-line co-verification tool is implemented by 3 pieces 
of software running on the GSE Linux machine: 
p2serialcmds, cl3_console and LiveView (Figure 
4). The cl3_console acquires real-time compressed and 
non-compressed frames which are verified by the off-line 
verification tool. The LiveView tool detects errors in the 
non-compressed image acquisition of the SoC such as 
flickering of pixels (Figure 5). The p2serialcmds tool 
programs the instrument and the SoC in different 
verification and operation modes by sending single 
commands sequentially to the SoC instrument avionics 
(Figure 6). For example, it can program the image to be a 
synthetic pattern generated by either SoC or the focal plane 

interface electronics (FPIE) or the focal plane array (FPA) 
of the hyperspectral camera. It can also program the cloud 
screening parameters, the compression parameters, line 
rate, the FPA, the heaters and the focus step motor and 
reports telemetry on their status. Finally it allows 
commanding the acquisition of compressed and non-
compressed frames. 

These on-line co-verification tools detect and identify 
faults in either the software, FPGA firmware, hardware 
interface or peripheral devices in real-time and locate the 
modules responsible for the errors. 

Software Architecture 

The graphical user interface (GUI) is connected to the 
instrument avionics via the serial command front-end. 
Each graphic component that makes up the GUI has a 
corresponding listener method that receives the events and 
responds to them in the serial commands front-end. The 
listener methods do so by building an image setup structure 
with the parameters based on input through the GUI. 
Possible request to the GUI consists of the following: 
acquiring the states of the various parameters of the 
instrument avionics, querying the instrument avionics 
registers, cloud screening results of images and thresholds 
parameters, cloudy pixels values, cloudy cross-track 
pixels, and timestamps for the aforementioned pixels. The 
various parameters of the instrument avionics include the 
number of least significant bit drop, the number Pulse per 
second (PPS), the PPS captured timestamp, and GPS time. 
Each spectrometer command is represented in the software 
as an enumerated type, which is a data type that consists of 
a set of named elements. The enumerated types are used to 
identify the custom command’s values that are sent as a 
query to the spectrometer avionics.  

Qt Creator operates on a framework where each object on 
the GUI is paired with a function in the code. This model 
is called “signal and slot”, where a specified GUI object 
“signals” a particular function, called a “slot”, to be 
triggered in response. User-input data introduced by the 
GUI is received and parsed via “signal and slot.” A “signal” 

Figure 4. Software Architecture of the on-line Verification tools for SoC instrument avionics  
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can trigger one or more serial commands. The data is 
incorporated into a reply structure that the serial 
commands common and communication I/O can 
process. 

The user-entered data from the GUI is passed to the 
serial commands common by building a generic reply 
structure with a command type, which is comprised of 
either an instrument command, program command or 
custom command. The command is then parsed in the 

serial commands common after being passed to the 
communication I/O in the form of a signal. The 
commands are processed in the serial commands 
common, which then queues up the commands and sends 
them to the spectrometer avionics. The serial 
commands common receives replies from the SoC 
instrument avionics and passes said data to the 
communication port in the communication I/O. Any 
data received from the instrument avionics is parsed and 
copied by the communication I/O into another generic 
reply structure and thrown via “signal and slot” to the 
serial commands front-end.  

Qt and Qt Creator 

The p2serialcmds software was built using the cross-
platform application framework, Qt5. The open-source 
graphical user interface library was selected to leverage Qt 

Creator, the C++ integrated development environment that 
is part of the software development kit for the Qt graphical 
user interface application development framework. The 
library enables immediate interface creation and 
connection of said graphics to the back-end. Qt Creator is 
integrated with version control systems used in the project 
like Git and includes a debugger plugin to connect the Qt 
Creator core and external debugger to debug the C++ code.   

Results 

A graphical window running on the GSE Linux computer 
displays results received from the spectrometer instrument 
avionics (Figure 6). The primary tab of the user interface 
enables the initial setup of the spectrometer to its default 
settings and include basic functions such as sending pings 
to check serial communication, fixing bit depth of the 
image samples to either 14-bit or 16-bit to reduce the 
sample noise, and setting PPS to be captured at its rising or 
falling edge depending on the GPS/IMU device. The FPA 
emulator section of the GUI allows the user to turn on or 
turn off an emulation of the focal plane array inside the 
instrument avionics. It is used upon power-on of the 
instrument avionics to confirm that the image data 
communication through low voltage differential signal 
(LVDS) or camera link is working properly.  
 
Two log files are updated in real-time while the 
p2serialcmds software is being used. The user specifies the 

Figure 6: Graphical User Interface of the 
p2serialcmds on-line Verification tool for SoC 

instrument avionics 

Figure 5: Real-time visualization of image (top) 
and ancillary data in first band (bottom) using 
the LiveView on-line Verification tool for SoC 

instrument avionics. 
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status log file and command log file. For every signal sent 
by the GUI, status text is updated in real time on the GUI 
as well as written to both the status log file and the 
command log file. On exit from the software, both log files 
are closed and saved in a specified directory.  
 
Several tabs focus on different sections of the 
spectrometer. The ADC tab deals with the analog-to-digital 
converter (ADC) registers and sends either test patterns or 
custom values to the 8 channels. Each channel needs to be 
reset before being programmed and includes error-
checking for valid input from between 0 to 65535 (216). 
Current temperature data can be acquired in a separate tab 
and the heaters can be set to warm or cool the spectrometer. 
The set-up temperature of the heaters can then be sent to 
the spectrometer and the temperature of 32 sensors can be 
queried from the spectrometer. Another section is reserved 
for focal plane array (FPA) register values. FPA register 
files, which include register settings, are selected and sent 
to the spectrometer. FPA timing values like frequency 
index and integration duration can be retrieved and set with 
built in error-checking that inputs are within a valid range. 
For the FPA, the user can also power on or off the FPA on 
the power supply unit (PSU). Manipulation of spectrometer 
registers is implemented on a separate tab and allows for 
queries and displays for various parameters and cloud 
screening outputs. 
 
A focus step motor log file is generated each time the focus 
step motor state is queried. The GUI shows the new log 
position based on the current absolute position of the step 
motor, the user chosen the number of half step and the 
direction to be executed by the step-motor. The GUI 
includes functionalities for changing log file extensions, 
rerouting default files and directories, and reorganizing the 
order of procedures. When a focus step motor query is 
made, the log file position is shifted by the accumulated 
half steps executed by the focus step motor in the chosen 
motor direction. During each query, a validation is made to 
ensure that the projected position is within the mechanical 
limits of the focus step motor, which is user chosen or a 
default of 4000 half steps. When a focus step motor query 
is received by the p2serialcmds software, the current focus 
step motor position is written to the focus log file along 
with the current phase of the step motor position. All 
parameters of the focus query are also displayed to the 
graphical user interface, including the next and current 
phase, accumulated half steps, acceleration, velocity, and 
current motor status and status time stamp. The 
corresponding focus log file is stored in a separate folder 
and is automatically saved on exit of the software. The log 
file is re-opened on reboot of the p2serialcmds software 
and the current absolute position is retrieved on valid 
reading of the log file. 
 
On initial use of the p2serialcmds, it is important to verify 
that the actions of the software are being sent to and 
retrieved from the spectrometer correctly. Corresponding 
verification tests are included to test some basic operations. 
One such test verifies that “Synchronization Time” 

messages are being retrieved from the spectrometer 
correctly. To do this, a pre-determined number of 
“Synchronization Time” messages are sent to the 
instrument avionics. If the avionics is working as expected, 
it counts the number of “Synchronization Time” messages 
received. p2serialcmds is computes the  difference between 
the initial count and final count. Each instance a time is 
queried, a “Synchronization Time Message” is sent, so the 
count is correspondingly incremented, which means that 
the initial and final count should differ by the pre-
determined value. A command is sent to request various 
parameters, one of which includes the “Synchronization 
Time Message.” When the final message count is received 
by the p2serialcmds, this difference is compared, and the 
verification test then displays if the messages and time 
queries are being transmitted successfully. If no response 
is received by the p2serialcmds within a pre-determined 
interval of time, p2Serialcmds is reporting the failure to 
command the instrument avionics. 

 

4. OFF-LINE DATA VERIFICATION  
The off-line verification is done following the acquisition 
of a flight line (Figure 7), while in flight or on the ground. 

It can also be run on a multitude of flight lines. The 
verification accounts for multiple formats of data. For 
example, it was applied to data generated by 3 different 
airborne spectrometers flying on TwinOtter, King Air 
B200, ER2: AVIRIS-NG [16], HyTES [18], and PRISM 

Figure 7. Thumbnail of science portion 
of a flight line 

Figure 8. A flight-line after orthorectification 
post-processing with incorrect ancillary data on 
the left showing distorted roads and buildings 
compared to a correctly orthorectified image on 
the right 
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[17]. It allows detection of ancillary data with incorrect 
timing prior applying intensive post-data processing such 
as orthorectification (Figure 8). It also allows reporting 
performance such as compression ratio and can detect 
multiple other issues with the hyperspectral camera and the 
SoC instrument avionics such as decompression errors, 
missing lines, missing frames, wrong frames rate as 
explained in the next sections. 

Data Format 

The acquisition of images is performed through multiple 
acquisition of frames. Each frame has a header part and a 
data part which includes 32 lines. Each line is an image 
with 640 cross-track pixels by 480 bands which is 
programmable. The 32 lines of each frame can be either 
compressed or non-compressed. Each frame has a fixed 
size non-compressed header. Each line has ancillary data 
in its first band (Figure 5). The frame and line headers 
contain information used by the verification tools and 
describing the state of the instrument during the acquisition 
of the frame and the line. For example, the header includes 
frame size, frame count, data frame identifier 
(start/acquire/stop flag), data collection identifier, the line 
count of the first line in the frame, the time stamp of the 
first line in the frame, the UTC time of the acquisition of 
the first line in the frame, the number of cloud pixels in the 
frame, temperature of the Focal Plane interface electronics, 
the position of the step motor during the acquisition of the 
frame. The line header contains the line count, the time 
stamp of the lines, the number of cloud pixels in the line, 
the line frequency and the clock programming parameters, 
the UTC time at the time of acquisition of the line.  

 
Software Architecture 

The frames recorded during multiple acquisition by SoC 
instrument avionics commanded by the Command and 
Telemetry Real-time control are saved in a single directory. 
If the data directory contains compressed raw frames, the 
Python decompression script needs to be used to 
decompress the frames before using other verification, 
validation and diagnostic scripts, which are comprised of 
three software: CheckList, CheckFrame, and 
CheckLine (Figure 9). The decompression script runs the 
Flex Codec decompressor software on all the compressed 
frame files inside a given directory. It first identifies all of 
the frames files and then parses out the data collection 
start/acquire/stop identifier value in the frame header of 
each image file. The data collection start/acquire/stop 
identifier is set to one of three values: 0, 1, or 2. An ID of 
1 indicates that the current frame is the first of an 
acquisition, an ID of 2 indicates the frame is the final frame 
in an acquisition, and an ID of 0 indicates the current frame 
is neither the first nor final of an acquisition. If a frame has 
a data collection value of 2; the frame is simply copied and 
given the extension .decomp. Otherwise, the decompressor 
software is applied. At the end, the script generates a report 
containing a list of frames already decompressed. The 
CheckList software loops through all the frames 
sequentially inside a given directory under the assumption 
that all the frames have first been decompressed. At each 
iteration, CheckList performs the CheckFrame software 
on a single frame. 

Figure 9. Software Architecture of off-line Verification Tools for SoC instrument avionics 
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In the CheckFrame software, fields of both the frame 
header and the line headers of the raw image files are 
parsed. Each frame’s fields are verified for correctness, and 
test results are written to both a text file and csv file. The 

data for each frame is split into acquisitions determined by 
using the data collection start/acquire/stop identifier 
values. After the loop on the frames acquired ends, the 
CheckList software generates the 
“all_frame_report” file containing checks at the all 
frames level.  

The “all_frames_report” reports first the number of 
acquisitions found and the start and final frame of each 
acquisition. If a start or final frame is labeled “MISSING”, 

the user will know to begin debugging here and can assume 
that the rest of the report is invalid. The remainder of the 
report contains checks for multiple acquisition of frames 
by the instrument avionics.  

The CheckFrame software parses the header of a frame 
and calls the CheckLine software to parse the lines of the 
frame. Both software generate their own report text file 
along with a csv file with all of the parsed data. The 
CheckFrame software then combines the two text files 
into one report called “frame_report”. 
 
The CheckLine software can also be used independently 
to parse a non-compressed data file acquired through the 
LiveView [4]. It will generate a report text file 

Figure 10: Frame Report generated by off-line Verification Tool 

====================================================================== 
FRAME ngis_check_frame SOFTWARE 
 Repository: https://github.jpl.nasa.gov/aviris/NGIS_Check_Line_Frame.git 
 Commit used for processing: 
  Revision: e3a6425b54c015175c3504f0b79f0c635a1ba044 
  Date/Time: 2017-12-19 16:10:45 
====================================================================== 
FRAME processing: image_116.640.15361.L16.xio 
TIME processing: 2017-12-29 16:26:59 
REPORT OUTPUT name: image_116.640.15361.L16.xio_20171229_framereport.txt 
====================================================================== 
FRAME SUMMARY 
====================================================================== 
Bytes Count: 
 >> Bytes in Files: 19662080 
 -> Check:  PASS 
  Expected: (640x480x32x2 + 640x2) = 19662080 
 
Dynamic Range: 
 Turned OFF 
 
Test 1: Missing Lines in a Frame 
 >> Number of Lines = 32 
 -> Check: PASS 
  Expected: 32 
 
Test 2: Line Frequency Check 
 >> Difference between last and first line Time Stamp: 0.51292 sec 
 -> Derived Data: 
  Estimated Lines Rate from table (same for all lines): 60.4562236288 lines/sec 
  Lines Rate using Time Stamp (1 / (Time Stamp / 32)): 62.387896748 lines/sec 
  Margin of Error: 5.0% 
 -> Check: PASS 
  Actual Lines Rate ~= Estimated Lines Rate 
 -> Note: 
  NGIS Project: L1-NGIS-11; 4.1.9; Sample rate; The sample rate shall be selectable over the range of 5 to 
125 samples per second. 
 
Test 5: Data Translation Error in Header 
 >> Frame Header Checksum: 2720865089 
 -> Check: PASS 
  Computed Checksum: 2720865089 
 
Test 6: Cloud Screening Test 
 >> Cloud Screening Cross-Track Pixels Count in Frame for lines 0-30: 0 
 -> Check: 
  Computed the Cloud Screening for each of the 31 Lines (see report in LINE PARSING): All Line PASS 
  Computed sum of Clouds Screening Bytes for lines 1 to 31 = 0: PASS 
 -> Derived Data: 
  Cloud Screening Frame Threshold: 640 
   FRAMES_NOT_CLOUDY 
  Cloud Screening Register Values 
   Time Stamp: N/A, values are taken from ngis_config.txt 
    C1: 16 
    C2: 32 
    C3: 64 
    C4: 128 
    C5: 256 
    T1: 0 
    T2: 0 
    T3: 0 
    T4: 0 
    T5: 0 
    TB: 640 
 -> Note: 
  NGIS Project: L1-NGIS-5; 4.1.5; Cloud detection; The instrument shall implement a cloud-detection 
algorithm. 
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“line_report.txt” and a csv file 
“line_parsed.csv” in the same format as the ones for 
the LVDS data. Additionally, for all lines with ancillary 
data including a copy all navigation data sent by the 
GPS/IMU device through the Rx UART , the software will 
concatenate the Rx UART data over multiple lines and 
deliver the stored concatenation as a binary file 
“Rx_UART.bin” at the end. The same process is done for 
all the commands sent to the GPS/IMU devise through Tx 
UART data. These binary files can be parsed to extract 
location (longitude, latitude, altitude) and inertial 
information (velocity, acceleration, roll, pitch) of the 
instrument. 
 
The CheckList, CheckFrame, and CheckLine scripts 
uses a configuration file (“ngis_config.txt”). This 
file allows customization of the checking (algorithm and 
error margin) for different instrument avionics hardware 
and mode of operation (with or without IMU/GPS device, 
in the air or in the ground, image size, cloud screening 
parameters). The Decompressor script utilizes its own 
configurable text file, “flexcodec.txt” that allows the 
user to pass commands option to the Flex decompressor 
software. 

Results 

Each script provides a suite of verification. Example of 
these checks are described below: 

• All Frame Level: these checks are done over multiple 
acquisition of frames by the instrument avionics. 
• Missing Frames in an Acquisition – Checks for 

no missing frame by verifying that the frame 
count is incrementing by 1 for all the frames 
inside an acquisition. Also, reports if all the 
Missing Lines in a Frame checks at the Frame 
Level are passing for the acquisition. 

• Pulse Per Second – Checks for no missing 
detection of PPS by verifying that the PPS 
counts are incrementing by 1 at every second. In 
addition, checks that the PPS time stamps 
generated by the instrument avionics is 
incremented by 100,000 Clock ticks (Clock tick 
is 100kHz) at every second, with margin of error 
taken into account. 

• Compression Ratio – Reports the average 
compression ratio of all the frames in the data 
directory, and the average compression ratio for 
each acquisition. 

• End of Acquisition – Check if the data 
acquisition is terminated correctly by verifying 
that the frame header of the final frame of an 
acquisition is the same as that of the frame 
before it. 

• Summary Frame level Checks: Reports the 
results of the Line Frequency and Cloud 
screening checks performs at the frame level 

• Frame Level: these checks are done over a single 
frame acquisition. Each frame contains 32 lines (See 
Figure 10). 
• Missing Lines in a Frame – Checks that all 32 

lines are in the frame by verifying that the line 
count is incremented by one. 

• Data Transmission Error in Frame Header – 
Checks that the computed checksum of the data 
header is equal to the parsed frame header 
checksum ancillary data. 

• Cloud Screening – Checks that the computed 
sum of clouds screening ancillary data for lines 
1 to 31 is equal to the parsed frame header 
clouds screening ancillary data. Also reports the 
result of the Cloud Screening Test at the Line 
Level (see below).  

• Summary Line level Checks: Reports the results 
of the Line Frequency checks performs at the 
line level 

• Line Level: these checks are done over acquisition of 
multiple lines 
• Ancillary Data – Checks if the ancillary data is 

formatted correctly, quickly allowing the user to 
know if the rest of the report file is accurate. 

• Summary Line level checks – Reports if all the 
checks at line level are passing and if it fails, 
report the location of where fails are at. It 
provides to the user a quick diagnostic of the 
instrument avionics. 

• Line Frequency – Checks that the actual lines 
rate is equivalent to the estimated lines rate 
provided by the parsed line header line 
frequency ancillary data. 

• Bytes Count – Check that the data file size is 
equal to the expected file size based on the 
number of lines acquired as reported in the 
parsed line header line count ancillary data. 

• PPS, Time Message and Line instrument 
avionics Timestamps: The time stamps 
associated with the PPS, the line and the Time 
message are tested. The timestamp, generated 
by an instrument avionics 100kHz Clock, 
provides a synchronization mechanism for all 
events captured by the instrument avionics with 
an external time (such as GPS or UTC time) 
through the Pulse per Seconds signal.  

• Cloud Screening - Checks that the computed 
cloud screening matches the parsed clouds 
screening ancillary data for each of the 31 lines. 
The parameters used by the clouds screening 
algorithm are either extracted from the clouds 
screening parameters sent to the instrument 
avionics (reported in the “status.csv” file) 
or, if not provided, the default values extracted 
from the configuration file 
“ngis_config.txt” . 

• Data Transmission Error in Line Ancillary 
Data–Checks for Time, Rx UART, Tx UART 
messages with data checksum that the computed 
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checksum is equal to the parsed checksum 
ancillary data. 

 
In addition to checking the images recorded, the 
verification tool also correlates the commands and 
telemetry issued by the Instrument Avionics with the 
images recorded. First, ngis_cmdstlm_parser parses 
the commands and telemetry file, which contains all the 
bytes sent and received to and from the Instrument 
Avionics. If the log file of the Command and Telemetry 
graphical user interface (GUI) is provided as input to the 
script, it will associate the user configuration filename with 
the commands inputs. The script output are 
“commands_parsed.txt” file with the parsed 
commands based on a dictionary and 
“commands_report.txt” file correlating the commands 
with GUI events.  

Finally the Ngis_State script retrieves the state of the 
Instrument Avionics at a specified line number using the 
“commands_report.txt” is in conjunction with the 
“line_report.txt”. The Ngis_State script sorts the 
commands in the “commands_report.txt” with time 
stamp. Same commands are grouped together. The script 
extracts the time stamp of the specified line number from 
the “line_report.txt”. Finally, for each group of the 
same command, the script searches the command with the 
latest timestamp equal to or before the line’s time stamp. If 
found, then the script reports the command at that time 
instance. If there are none, then for that group, the script 
reports that the logging of the commands started after the 
acquisition of this line. 

5. SUMMARY  
We have developed hardware/software co-verification tool 
for hyperspectral imagers SoC instrument avionics. The 
on-line HW/SW co-verification tool allows the parallel 
agile development of SoC platform while the off-line tool 
provides a verification method of the integrity of the 
ancillary data includes in each images prior intensive post-
data processing such as orthorectification. These on-line 
co-verification tools detect and identify faults in either the 
Software, FPGA firmware, Hardware interface or 
peripheral devices in real-time and help the developer to 
locate the modules responsible for the errors. In the future, 
these tools will be port into the instrument avionics itself 
on the next generation Multi Processor System-on-Chip 
(MPSoC). 
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