
 1

LiveCheckHSI: a Hardware/Software Co-verification Tool
for Hyperspectral Imaging Systems with Embedded

System-on-Chip Instrument Avionics
Irene Wang1, Didier Keymeulen2, Danny Tran4, Elliott Liggett2, Matthew Klimesh2, David

Dolman3, Daniel Nunes2, Peter Sullivan2, Michael Bernas2, Michael Pham5
1California Institute of Technology, Pasadena, CA

2Jet Propulsion Laboratory, California Institute of Technology,4800 Oak Grove Dr., Pasadena, CA
3Alpha Data Inc., Denver CO

4University of California, Irvine, CA
5University of California, Los Angeles, CA

siwang@caltech.edu

Abstract — The emergent technology of system-on-chip (SoC)
devices promises lighter, smaller, cheaper, and more capable
and reliable space electronic systems that could help to unveil
some of the most treasured secrets in our universe. This
technology is an improvement over the technology that is
currently used in space applications, which lags behind state-
of-the-art commercial-off-the-shelf (COTS) equipment by
several generations. SoC technology integrates all
computational power required by next-generation space
exploration science instruments onto a single chip. This paper
describes hardware/software co-verification tools for the
Xilinx Zynq-based control and data handling system that
have been developed at the Jet Propulsion Laboratory (JPL)
for visible-infrared imaging spectrometers. The system
acquires and compresses images in real-time, in addition to
programming the spectrometer (frame rate, exposure time),
focus step motor, and heaters and reporting telemetry.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. SOC INSTRUMENT AVIONICS 2
3. ON-LINE DATA VERIFICATION 3
4. OFF-LINE DATA VERIFICATION 5
5. SUMMARY .. 9
ACKNOWLEDGEMENTS ... 9
REFERENCES.. 9
BIOGRAPHY ... 10

1. INTRODUCTION
Hyperspectral images are three-dimensional data sets,
where two of the dimensions are spatial and the third is
spectral (Figure 1). They can be regarded as a stack of
individual images that represent the same spatial scene
viewed in a distinct, narrow part of the electromagnetic
spectrum. The Airborne Visible/Infrared Imaging
Spectrometer-Next Generation (AVIRIS-NG [16])
instrument is an example of an instrument that can acquire
such imagery. Hyperspectral imagery can also be acquired
from spacecraft. Because one hyperspectral image can be

 978-1-5386-2014-4/18/$31.00 ©2018 IEEE

comprised of hundreds of spectral bands, it can represent a
large volume of data. Future spacecraft that acquire
hyperspectral imagery [26] may have modest bandwidths
available to transfer the data to the ground, and there is
much interest in compressing the data efficiently [1][2][3].

The JPL-developed Fast Lossless hyperspectral
compressor [23] is a low complexity compression
technique. The compression effectiveness is derived from
an adaptive filtering method. The technique is currently
implemented on both software and hardware platforms for
various space applications. In particular, the algorithm has
been programmed on a Field Programmable Gate Array
(FPGA), which is a hardware platform that can be used in
space for data processing. The FPGA implementation is
capable of compressing data in real-time as it is acquired.

Hybrid System-on-Chip (SoC) devices that embed one of
the world's most energy efficient processor (ARM Cortex-
A9 [8]) and the latest and most powerful FPGA
architecture (Xilinx 7-series [9]) into a single chip (Xilinx
Zynq [10]) promise new opportunities due to the
performance, power consumption, weight and volume
benefits they bring. Indeed, programmable logic and
processors are usually combined in most spacecraft

Figure 1. An example of a hyperspectral
data cube: Pearl Harbor, Hawaii, taken by
the AVIRIS instrument

 2

subsystems as separate components distributed along one
or several circuit boards [11][12]. NASA and other space
agencies are considering SoC technology for its high
computation capabilities and power efficiency, hoping to
pave the way for future space exploration missions that are
becoming so performance-demanding that currently
available space-grade technology (e.g., RAD750 [13])
cannot meet their needs[24]. Despite the fact that currently
there are no space-qualified SoC parts, NASA is testing
commercial Xilinx Zynq SoC devices in the International
Space Station (ISS) as well as in precursor CubeSats
operating in Low Earth Orbit (LEO), where the exposure
to radiation is limited [19][20][21][28].

The complexity of hardware, software and HW/SW
integration that arises from the convergence of so much

functionality in such small hybrid SoC devices has driven
both hardware and software innovation at almost break-
neck speed, while the development methodology that
brings hardware and software together lags behind.
Sequential development, with software development
waiting for available hardware, is still the prevailing norm.
But sequential development often fails to deliver quality
products within the short windows that rule the faster,
cheaper and robust space missions today [7]. A more robust
systems engineering approach is to have both HW/SW co-
developed and genetically linked. To help in the parallel
agile development of hardware and software for SoC
technology [14], hardware/software co-verification tools
have been developed for the hyperspectral imagers. These
tools make sure that embedded system software works
correctly with the hardware, and that the hardware has been
properly designed to run the software successfully before
deploying the image spectrometers in expensive space or
airborne missions [5]. One of the co-verification tool is
LiveView [4]. It was initially designed for real-time
calibration of focal plane arrays. It is performing real-time
analysis of images acquired through the Camera Link
interface of the hyperspectral camera. This calibration
analysis is used to identify sources of electronic noise and
interference in the imaging spectrometer and to
characterize the FPA [15]. In the co-verification process, it

is detecting errors in the firmware or software
implementations.

This paper presents two techniques of hardware/software
co-verification for instrument avionics for hyperspectral
spectral imagers: on-line and off-line. Section 2 presents
the SoC for imagers. Section 3 presents the on-line
verification tool. The tool controls the instrument to
perform all the required functionalities and recognizes and
handles unexpected behavior. It is used as ground support
equipment (GSE) connected to the spectrometer and its
avionics. Section 4 presents the off-line verification tool. It
is parsing the data acquired by the spectrometer. Its goal is
to guarantee that the raw data are consistent to be processed
for calibration and analysis data processing.

2. SOC INSTRUMENT AVIONICS
The SoC instrument avionics performs data acquisition,
cloud-screening and compression computing system for
hyperspectral imagers (Figure 2). It is implemented on the
Xilinx Zynq-based custom Alpha Data hardware assembly
which fits into a 120mm by 190m by 40mm assembly and
uses 9 watts at peak performance (Figure 3) [25]. The
computing element is a Xilinx Zynq Z7045Q which

Figure 2. System-on-Chip instrument avionics architecture for hyperspectral imagers

Figure 3. System-on-Chip Instrument
Avionics for Hyperspectral Imaging

Systems

 3

includes a Kintex-7 FPGA and dual-core ARM Cortex-A9
Processors.

Hyperspectral images are acquired, screened for
atmospheric clouds [27], and compressed (either losslessly
or lossily) in real-time using JPL’s “Fast Lossless
Extended” (FLEX) compressor [22], implemented into the
Programmable Logic (PL) of the Zynq SoC, and sent to on-
line HW/SW verification tools either through Camera Link
(LiveView[4]) or LVDS protocol (cl3_console). In
addition the PL interfaces with Focus Step motor, 32
temperature sensors, 12 heaters and an IMU/GPS device

providing inertial/position information and time
synchronization with GPS or UTC time. The processing
system (PS) of the Zynq SoC implements Command and
Data Handling to program the Hyperspectral Camera
(frame rate, exposure time), acquires telemetry
(temperature, pulse-per-seconds counts, frames count),
control heaters, focus motor and data flow inside the PL.
The PS interfaces with the Real-Time Cmd&Tlm
(p2serialcmds) performing on-line HW/SW verification.

The on-line HW/SW co-verification tool allows the
parallel agile development of the SoC platform while the
off-line tool provides a method to verify the integrity of the
ancillary data included in each image.

3. ON-LINE DATA VERIFICATION
The on-line co-verification tool is implemented by 3 pieces
of software running on the GSE Linux machine:
p2serialcmds, cl3_console and LiveView (Figure
4). The cl3_console acquires real-time compressed and
non-compressed frames which are verified by the off-line
verification tool. The LiveView tool detects errors in the
non-compressed image acquisition of the SoC such as
flickering of pixels (Figure 5). The p2serialcmds tool
programs the instrument and the SoC in different
verification and operation modes by sending single
commands sequentially to the SoC instrument avionics
(Figure 6). For example, it can program the image to be a
synthetic pattern generated by either SoC or the focal plane

interface electronics (FPIE) or the focal plane array (FPA)
of the hyperspectral camera. It can also program the cloud
screening parameters, the compression parameters, line
rate, the FPA, the heaters and the focus step motor and
reports telemetry on their status. Finally it allows
commanding the acquisition of compressed and non-
compressed frames.

These on-line co-verification tools detect and identify
faults in either the software, FPGA firmware, hardware
interface or peripheral devices in real-time and locate the
modules responsible for the errors.

Software Architecture

The graphical user interface (GUI) is connected to the
instrument avionics via the serial command front-end.
Each graphic component that makes up the GUI has a
corresponding listener method that receives the events and
responds to them in the serial commands front-end. The
listener methods do so by building an image setup structure
with the parameters based on input through the GUI.
Possible request to the GUI consists of the following:
acquiring the states of the various parameters of the
instrument avionics, querying the instrument avionics
registers, cloud screening results of images and thresholds
parameters, cloudy pixels values, cloudy cross-track
pixels, and timestamps for the aforementioned pixels. The
various parameters of the instrument avionics include the
number of least significant bit drop, the number Pulse per
second (PPS), the PPS captured timestamp, and GPS time.
Each spectrometer command is represented in the software
as an enumerated type, which is a data type that consists of
a set of named elements. The enumerated types are used to
identify the custom command’s values that are sent as a
query to the spectrometer avionics.

Qt Creator operates on a framework where each object on
the GUI is paired with a function in the code. This model
is called “signal and slot”, where a specified GUI object
“signals” a particular function, called a “slot”, to be
triggered in response. User-input data introduced by the
GUI is received and parsed via “signal and slot.” A “signal”

Figure 4. Software Architecture of the on-line Verification tools for SoC instrument avionics

 4

can trigger one or more serial commands. The data is
incorporated into a reply structure that the serial
commands common and communication I/O can
process.

The user-entered data from the GUI is passed to the
serial commands common by building a generic reply
structure with a command type, which is comprised of
either an instrument command, program command or
custom command. The command is then parsed in the

serial commands common after being passed to the
communication I/O in the form of a signal. The
commands are processed in the serial commands
common, which then queues up the commands and sends
them to the spectrometer avionics. The serial
commands common receives replies from the SoC
instrument avionics and passes said data to the
communication port in the communication I/O. Any
data received from the instrument avionics is parsed and
copied by the communication I/O into another generic
reply structure and thrown via “signal and slot” to the
serial commands front-end.

Qt and Qt Creator

The p2serialcmds software was built using the cross-
platform application framework, Qt5. The open-source
graphical user interface library was selected to leverage Qt

Creator, the C++ integrated development environment that
is part of the software development kit for the Qt graphical
user interface application development framework. The
library enables immediate interface creation and
connection of said graphics to the back-end. Qt Creator is
integrated with version control systems used in the project
like Git and includes a debugger plugin to connect the Qt
Creator core and external debugger to debug the C++ code.

Results

A graphical window running on the GSE Linux computer
displays results received from the spectrometer instrument
avionics (Figure 6). The primary tab of the user interface
enables the initial setup of the spectrometer to its default
settings and include basic functions such as sending pings
to check serial communication, fixing bit depth of the
image samples to either 14-bit or 16-bit to reduce the
sample noise, and setting PPS to be captured at its rising or
falling edge depending on the GPS/IMU device. The FPA
emulator section of the GUI allows the user to turn on or
turn off an emulation of the focal plane array inside the
instrument avionics. It is used upon power-on of the
instrument avionics to confirm that the image data
communication through low voltage differential signal
(LVDS) or camera link is working properly.

Two log files are updated in real-time while the
p2serialcmds software is being used. The user specifies the

Figure 6: Graphical User Interface of the
p2serialcmds on-line Verification tool for SoC

instrument avionics

Figure 5: Real-time visualization of image (top)
and ancillary data in first band (bottom) using
the LiveView on-line Verification tool for SoC

instrument avionics.

 5

status log file and command log file. For every signal sent
by the GUI, status text is updated in real time on the GUI
as well as written to both the status log file and the
command log file. On exit from the software, both log files
are closed and saved in a specified directory.

Several tabs focus on different sections of the
spectrometer. The ADC tab deals with the analog-to-digital
converter (ADC) registers and sends either test patterns or
custom values to the 8 channels. Each channel needs to be
reset before being programmed and includes error-
checking for valid input from between 0 to 65535 (216).
Current temperature data can be acquired in a separate tab
and the heaters can be set to warm or cool the spectrometer.
The set-up temperature of the heaters can then be sent to
the spectrometer and the temperature of 32 sensors can be
queried from the spectrometer. Another section is reserved
for focal plane array (FPA) register values. FPA register
files, which include register settings, are selected and sent
to the spectrometer. FPA timing values like frequency
index and integration duration can be retrieved and set with
built in error-checking that inputs are within a valid range.
For the FPA, the user can also power on or off the FPA on
the power supply unit (PSU). Manipulation of spectrometer
registers is implemented on a separate tab and allows for
queries and displays for various parameters and cloud
screening outputs.

A focus step motor log file is generated each time the focus
step motor state is queried. The GUI shows the new log
position based on the current absolute position of the step
motor, the user chosen the number of half step and the
direction to be executed by the step-motor. The GUI
includes functionalities for changing log file extensions,
rerouting default files and directories, and reorganizing the
order of procedures. When a focus step motor query is
made, the log file position is shifted by the accumulated
half steps executed by the focus step motor in the chosen
motor direction. During each query, a validation is made to
ensure that the projected position is within the mechanical
limits of the focus step motor, which is user chosen or a
default of 4000 half steps. When a focus step motor query
is received by the p2serialcmds software, the current focus
step motor position is written to the focus log file along
with the current phase of the step motor position. All
parameters of the focus query are also displayed to the
graphical user interface, including the next and current
phase, accumulated half steps, acceleration, velocity, and
current motor status and status time stamp. The
corresponding focus log file is stored in a separate folder
and is automatically saved on exit of the software. The log
file is re-opened on reboot of the p2serialcmds software
and the current absolute position is retrieved on valid
reading of the log file.

On initial use of the p2serialcmds, it is important to verify
that the actions of the software are being sent to and
retrieved from the spectrometer correctly. Corresponding
verification tests are included to test some basic operations.
One such test verifies that “Synchronization Time”

messages are being retrieved from the spectrometer
correctly. To do this, a pre-determined number of
“Synchronization Time” messages are sent to the
instrument avionics. If the avionics is working as expected,
it counts the number of “Synchronization Time” messages
received. p2serialcmds is computes the difference between
the initial count and final count. Each instance a time is
queried, a “Synchronization Time Message” is sent, so the
count is correspondingly incremented, which means that
the initial and final count should differ by the pre-
determined value. A command is sent to request various
parameters, one of which includes the “Synchronization
Time Message.” When the final message count is received
by the p2serialcmds, this difference is compared, and the
verification test then displays if the messages and time
queries are being transmitted successfully. If no response
is received by the p2serialcmds within a pre-determined
interval of time, p2Serialcmds is reporting the failure to
command the instrument avionics.

4. OFF-LINE DATA VERIFICATION
The off-line verification is done following the acquisition
of a flight line (Figure 7), while in flight or on the ground.

It can also be run on a multitude of flight lines. The
verification accounts for multiple formats of data. For
example, it was applied to data generated by 3 different
airborne spectrometers flying on TwinOtter, King Air
B200, ER2: AVIRIS-NG [16], HyTES [18], and PRISM

Figure 7. Thumbnail of science portion
of a flight line

Figure 8. A flight-line after orthorectification
post-processing with incorrect ancillary data on
the left showing distorted roads and buildings
compared to a correctly orthorectified image on
the right

 6

[17]. It allows detection of ancillary data with incorrect
timing prior applying intensive post-data processing such
as orthorectification (Figure 8). It also allows reporting
performance such as compression ratio and can detect
multiple other issues with the hyperspectral camera and the
SoC instrument avionics such as decompression errors,
missing lines, missing frames, wrong frames rate as
explained in the next sections.

Data Format

The acquisition of images is performed through multiple
acquisition of frames. Each frame has a header part and a
data part which includes 32 lines. Each line is an image
with 640 cross-track pixels by 480 bands which is
programmable. The 32 lines of each frame can be either
compressed or non-compressed. Each frame has a fixed
size non-compressed header. Each line has ancillary data
in its first band (Figure 5). The frame and line headers
contain information used by the verification tools and
describing the state of the instrument during the acquisition
of the frame and the line. For example, the header includes
frame size, frame count, data frame identifier
(start/acquire/stop flag), data collection identifier, the line
count of the first line in the frame, the time stamp of the
first line in the frame, the UTC time of the acquisition of
the first line in the frame, the number of cloud pixels in the
frame, temperature of the Focal Plane interface electronics,
the position of the step motor during the acquisition of the
frame. The line header contains the line count, the time
stamp of the lines, the number of cloud pixels in the line,
the line frequency and the clock programming parameters,
the UTC time at the time of acquisition of the line.

Software Architecture

The frames recorded during multiple acquisition by SoC
instrument avionics commanded by the Command and
Telemetry Real-time control are saved in a single directory.
If the data directory contains compressed raw frames, the
Python decompression script needs to be used to
decompress the frames before using other verification,
validation and diagnostic scripts, which are comprised of
three software: CheckList, CheckFrame, and
CheckLine (Figure 9). The decompression script runs the
Flex Codec decompressor software on all the compressed
frame files inside a given directory. It first identifies all of
the frames files and then parses out the data collection
start/acquire/stop identifier value in the frame header of
each image file. The data collection start/acquire/stop
identifier is set to one of three values: 0, 1, or 2. An ID of
1 indicates that the current frame is the first of an
acquisition, an ID of 2 indicates the frame is the final frame
in an acquisition, and an ID of 0 indicates the current frame
is neither the first nor final of an acquisition. If a frame has
a data collection value of 2; the frame is simply copied and
given the extension .decomp. Otherwise, the decompressor
software is applied. At the end, the script generates a report
containing a list of frames already decompressed. The
CheckList software loops through all the frames
sequentially inside a given directory under the assumption
that all the frames have first been decompressed. At each
iteration, CheckList performs the CheckFrame software
on a single frame.

Figure 9. Software Architecture of off-line Verification Tools for SoC instrument avionics

 7

In the CheckFrame software, fields of both the frame
header and the line headers of the raw image files are
parsed. Each frame’s fields are verified for correctness, and
test results are written to both a text file and csv file. The

data for each frame is split into acquisitions determined by
using the data collection start/acquire/stop identifier
values. After the loop on the frames acquired ends, the
CheckList software generates the
“all_frame_report” file containing checks at the all
frames level.

The “all_frames_report” reports first the number of
acquisitions found and the start and final frame of each
acquisition. If a start or final frame is labeled “MISSING”,

the user will know to begin debugging here and can assume
that the rest of the report is invalid. The remainder of the
report contains checks for multiple acquisition of frames
by the instrument avionics.

The CheckFrame software parses the header of a frame
and calls the CheckLine software to parse the lines of the
frame. Both software generate their own report text file
along with a csv file with all of the parsed data. The
CheckFrame software then combines the two text files
into one report called “frame_report”.

The CheckLine software can also be used independently
to parse a non-compressed data file acquired through the
LiveView [4]. It will generate a report text file

Figure 10: Frame Report generated by off-line Verification Tool

==
FRAME ngis_check_frame SOFTWARE
 Repository: https://github.jpl.nasa.gov/aviris/NGIS_Check_Line_Frame.git
 Commit used for processing:
 Revision: e3a6425b54c015175c3504f0b79f0c635a1ba044
 Date/Time: 2017-12-19 16:10:45
==
FRAME processing: image_116.640.15361.L16.xio
TIME processing: 2017-12-29 16:26:59
REPORT OUTPUT name: image_116.640.15361.L16.xio_20171229_framereport.txt
==
FRAME SUMMARY
==
Bytes Count:
 >> Bytes in Files: 19662080
 -> Check: PASS
 Expected: (640x480x32x2 + 640x2) = 19662080

Dynamic Range:
 Turned OFF

Test 1: Missing Lines in a Frame
 >> Number of Lines = 32
 -> Check: PASS
 Expected: 32

Test 2: Line Frequency Check
 >> Difference between last and first line Time Stamp: 0.51292 sec
 -> Derived Data:
 Estimated Lines Rate from table (same for all lines): 60.4562236288 lines/sec
 Lines Rate using Time Stamp (1 / (Time Stamp / 32)): 62.387896748 lines/sec
 Margin of Error: 5.0%
 -> Check: PASS
 Actual Lines Rate ~= Estimated Lines Rate
 -> Note:
 NGIS Project: L1-NGIS-11; 4.1.9; Sample rate; The sample rate shall be selectable over the range of 5 to
125 samples per second.

Test 5: Data Translation Error in Header
 >> Frame Header Checksum: 2720865089
 -> Check: PASS
 Computed Checksum: 2720865089

Test 6: Cloud Screening Test
 >> Cloud Screening Cross-Track Pixels Count in Frame for lines 0-30: 0
 -> Check:
 Computed the Cloud Screening for each of the 31 Lines (see report in LINE PARSING): All Line PASS
 Computed sum of Clouds Screening Bytes for lines 1 to 31 = 0: PASS
 -> Derived Data:
 Cloud Screening Frame Threshold: 640
 FRAMES_NOT_CLOUDY
 Cloud Screening Register Values
 Time Stamp: N/A, values are taken from ngis_config.txt
 C1: 16
 C2: 32
 C3: 64
 C4: 128
 C5: 256
 T1: 0
 T2: 0
 T3: 0
 T4: 0
 T5: 0
 TB: 640
 -> Note:
 NGIS Project: L1-NGIS-5; 4.1.5; Cloud detection; The instrument shall implement a cloud-detection
algorithm.

 8

“line_report.txt” and a csv file
“line_parsed.csv” in the same format as the ones for
the LVDS data. Additionally, for all lines with ancillary
data including a copy all navigation data sent by the
GPS/IMU device through the Rx UART , the software will
concatenate the Rx UART data over multiple lines and
deliver the stored concatenation as a binary file
“Rx_UART.bin” at the end. The same process is done for
all the commands sent to the GPS/IMU devise through Tx
UART data. These binary files can be parsed to extract
location (longitude, latitude, altitude) and inertial
information (velocity, acceleration, roll, pitch) of the
instrument.

The CheckList, CheckFrame, and CheckLine scripts
uses a configuration file (“ngis_config.txt”). This
file allows customization of the checking (algorithm and
error margin) for different instrument avionics hardware
and mode of operation (with or without IMU/GPS device,
in the air or in the ground, image size, cloud screening
parameters). The Decompressor script utilizes its own
configurable text file, “flexcodec.txt” that allows the
user to pass commands option to the Flex decompressor
software.

Results

Each script provides a suite of verification. Example of
these checks are described below:

• All Frame Level: these checks are done over multiple
acquisition of frames by the instrument avionics.
• Missing Frames in an Acquisition – Checks for

no missing frame by verifying that the frame
count is incrementing by 1 for all the frames
inside an acquisition. Also, reports if all the
Missing Lines in a Frame checks at the Frame
Level are passing for the acquisition.

• Pulse Per Second – Checks for no missing
detection of PPS by verifying that the PPS
counts are incrementing by 1 at every second. In
addition, checks that the PPS time stamps
generated by the instrument avionics is
incremented by 100,000 Clock ticks (Clock tick
is 100kHz) at every second, with margin of error
taken into account.

• Compression Ratio – Reports the average
compression ratio of all the frames in the data
directory, and the average compression ratio for
each acquisition.

• End of Acquisition – Check if the data
acquisition is terminated correctly by verifying
that the frame header of the final frame of an
acquisition is the same as that of the frame
before it.

• Summary Frame level Checks: Reports the
results of the Line Frequency and Cloud
screening checks performs at the frame level

• Frame Level: these checks are done over a single
frame acquisition. Each frame contains 32 lines (See
Figure 10).
• Missing Lines in a Frame – Checks that all 32

lines are in the frame by verifying that the line
count is incremented by one.

• Data Transmission Error in Frame Header –
Checks that the computed checksum of the data
header is equal to the parsed frame header
checksum ancillary data.

• Cloud Screening – Checks that the computed
sum of clouds screening ancillary data for lines
1 to 31 is equal to the parsed frame header
clouds screening ancillary data. Also reports the
result of the Cloud Screening Test at the Line
Level (see below).

• Summary Line level Checks: Reports the results
of the Line Frequency checks performs at the
line level

• Line Level: these checks are done over acquisition of
multiple lines
• Ancillary Data – Checks if the ancillary data is

formatted correctly, quickly allowing the user to
know if the rest of the report file is accurate.

• Summary Line level checks – Reports if all the
checks at line level are passing and if it fails,
report the location of where fails are at. It
provides to the user a quick diagnostic of the
instrument avionics.

• Line Frequency – Checks that the actual lines
rate is equivalent to the estimated lines rate
provided by the parsed line header line
frequency ancillary data.

• Bytes Count – Check that the data file size is
equal to the expected file size based on the
number of lines acquired as reported in the
parsed line header line count ancillary data.

• PPS, Time Message and Line instrument
avionics Timestamps: The time stamps
associated with the PPS, the line and the Time
message are tested. The timestamp, generated
by an instrument avionics 100kHz Clock,
provides a synchronization mechanism for all
events captured by the instrument avionics with
an external time (such as GPS or UTC time)
through the Pulse per Seconds signal.

• Cloud Screening - Checks that the computed
cloud screening matches the parsed clouds
screening ancillary data for each of the 31 lines.
The parameters used by the clouds screening
algorithm are either extracted from the clouds
screening parameters sent to the instrument
avionics (reported in the “status.csv” file)
or, if not provided, the default values extracted
from the configuration file
“ngis_config.txt” .

• Data Transmission Error in Line Ancillary
Data–Checks for Time, Rx UART, Tx UART
messages with data checksum that the computed

 9

checksum is equal to the parsed checksum
ancillary data.

In addition to checking the images recorded, the
verification tool also correlates the commands and
telemetry issued by the Instrument Avionics with the
images recorded. First, ngis_cmdstlm_parser parses
the commands and telemetry file, which contains all the
bytes sent and received to and from the Instrument
Avionics. If the log file of the Command and Telemetry
graphical user interface (GUI) is provided as input to the
script, it will associate the user configuration filename with
the commands inputs. The script output are
“commands_parsed.txt” file with the parsed
commands based on a dictionary and
“commands_report.txt” file correlating the commands
with GUI events.

Finally the Ngis_State script retrieves the state of the
Instrument Avionics at a specified line number using the
“commands_report.txt” is in conjunction with the
“line_report.txt”. The Ngis_State script sorts the
commands in the “commands_report.txt” with time
stamp. Same commands are grouped together. The script
extracts the time stamp of the specified line number from
the “line_report.txt”. Finally, for each group of the
same command, the script searches the command with the
latest timestamp equal to or before the line’s time stamp. If
found, then the script reports the command at that time
instance. If there are none, then for that group, the script
reports that the logging of the commands started after the
acquisition of this line.

5. SUMMARY
We have developed hardware/software co-verification tool
for hyperspectral imagers SoC instrument avionics. The
on-line HW/SW co-verification tool allows the parallel
agile development of SoC platform while the off-line tool
provides a verification method of the integrity of the
ancillary data includes in each images prior intensive post-
data processing such as orthorectification. These on-line
co-verification tools detect and identify faults in either the
Software, FPGA firmware, Hardware interface or
peripheral devices in real-time and help the developer to
locate the modules responsible for the errors. In the future,
these tools will be port into the instrument avionics itself
on the next generation Multi Processor System-on-Chip
(MPSoC).

ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. The authors wish to thank the Caltech
Summer Undergraduate Research Fellowship’s (SURF)
program and the JPL Year-Round Internship Program
(JPLYIP) program for the funding necessary to carry out
the implementation of the validation, verification, and
diagnostic software.

REFERENCES
[1] D. Keymeulen, H. Luong, T. Pham, A. Kiely, M.
Klimesh, M. Cheng, D. Dolman, C. Holyoake, K. Crocker,
“Hardware implementation of Lossless and Lossy
Compression of Space-based Multispectral and
Hyperspectral Imagery,” in Proceedings of 2016 HyspIRI
Science and Applications Workshop, 18 - 20 October 2016,
California Institute of Technology, Pasadena, CA.

[2] Consultative Committee for Space Data Systems
(CCSDS), Lossless Data Compression, Recommendation
for space data system standards vol. 121.0-B-1: CCSDS,
1997. (http://public.ccsds.org)

[3] C. Hartzell, L. Graham, T. Tao, H. Goldberg, J.
Carpena-Nunez, D. Racek, C. Taylor, C. Norton, “Data
System Design for a Hyperspectral Imaging Mission
Concept,” in Proceedings of IEEE Aerospace Conference
2009.

[4] N. Levy, J.P. Ryan, Elliott H. Liggett, “LiveView: A
new utility for Real-Time Calibration of Focal Plane
Arrays using Commodity Hardware,” in Proceedings of
IEEE Aerospace Conference 2016.

[5] “IDE Overview.” Qt Creator Manual, The Qt
Company, 2017, https://doc.qt.io/qtcreator/

[6] J. Andrews, Co-verification of Hardware and Software
for ARM SoC Design, 2004, Elsevier.

[7] T. De Schutter, “The Power of Developing Hardware
and Software in Parallel,” In Design & reuse, EE Times,
April 29, 2013.

[8] E. Blem, J. Menon, and K. Sankaralingam, Detailed
Analysis of Contemporary ARM and x86 Architectures,
Technical report, University of Wisconsin - Madison,
2013.

[9] N. Mehta, Xilinx 7 Series FPGAs: The Logical
Advantage, Xilinx WP405, 2012.

[10] Xilinx Inc., Zynq-7000 All Programmable SoC:
Technical Reference Manual, UG585, 2015.

[11] R. C. Wiens et al., “The ChemCam Instrument Suite
on the Mars Science Laboratory (MSL) Rover: Body Unit
and Combined System Tests,” Space Science Reviews, pp.
167-227, Springer, 2012.

[12] D. Petrick, N. Gill, M. Hassouneh, R. Stone, L.
Winternitz, L. Thomas, M. Davis, P. Sparacino and T.
Flatley, “Adapting the SpaceCube v2.0 Data Processing
System for Mission-Unique Application Requirements,” in
Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems (AHS'15), 2015.

[13] BAE Systems Plc., RAD750 Radiation-Hardened
PowerPC Microprocessor, 2008.

http://public.ccsds.org/
https://doc.qt.io/qtcreator/

 10

[14] Ken Beck et al. , “Manifesto for Agile Software
Development” (http://agilemanifesto.org/)

[15] Peter Sullivan, Michael Bernas, Elliott Liggett,
Michael Eastwood, Robert Green, “Characterization of the
Teledyne CHROMA HgCdTe Detector for Imaging
Spectrometers,” in Proceedings of IEEE aerospace
conference, MT, USA, March 2017.

[16] Airborne Visible/Infrared Imaging Spectrometer-Next
Generation (AVIRISng), http://avirisng.jpl.nasa.gov/

[17] Portable remote imaging spectrometer (PRISM),
http://prism.jpl.nasa.gov

[18] Hyperspectral Thermal Emission Spectrometer
(HyTES),
https://airbornescience.jpl.nasa.gov/instruments/hytes

[19] D. Mandl, “Intelligent Payload Module Update,” in
Proc. of the HyspIRI Symposium, 2015.

[20] M. Amrbar, F. Irom, S. M. Guertin and G. Allen,
“Heavy Ion Single Event Effect Measurements of Xilinx
Zynq-7000 FPGA,” in Proc. of the Radiation Effects Data
Workshop (REDW'15), 2015.

[21] M. Wirthlin, “Neutron Radiation Test Results of the
Linux Operating System Executing within the CHREC
Space Processor (CSP),” in Proc. of the Military and
Aerospace Programmable Logic Device International
Conference (MAPLD'15), 2015.

[22] A. Kiely, M. Klimesh, N. Aranki, M. Burl, M. Cheng,
S. Dolinar, D. Dolman, M. Gilbert, G. Flesch, D.
Keymeulen, M. Le, J. Ligo, H. Luong, T. Pham, F. Sala, D.
Thompson, W. Wu, H. Xie, and H. Zhou, “Multispectral &
Hyperspectral Image Compression Development at the Jet
Propulsion Laboratory,” presented at the 2016 Onboard
Payload Data Compression Workshop (OBPDC16), 2016.

[23] Consultative Committee for Space Data Systems
(CCSDS), Lossless Multispectral & Hyperspectral Image
Compression, Recommendation for Space Data Systems
Standards, CCSDS 123.0-B-1, May 2012.

[24] G. Flesh, D. Keymeulen, D. Dolman, C. Holyoake, D.
McKee, “A System-on-Chip Platform for Earth and
Planetary Laser Spectrometers”. In Proceedings of IEEE
Aerospace Conference, March 2017, MT, USA.

[25] ADM-XRC-7Z1 User Manual, Revision V2.2, Alpha
Data Parallel Systems, Denver, CO, 2014
(https://www.alpha-data.com/esp/)

[26] Committee on the Decadal Survey for Earth Science
and Applications from Space, Space Studies Board,
“Thriving on Our Changing Planet:A Decadal Strategy for
Earth Observation from Space”, The National Academies
Press, 2018.

[27] Brian D. Bue, David R. Thompson, Michael
Eastwood, Robert O. Green, Bo-Cai Gao, Didier
Keymeulen, Charles M. Sarture, Alan S. Mazer, and Huy
H. Luong “Real time Atmospheric Correction of AVIRIS-
NG Imagery”, Journal of IEEE Transaction on Geoscience
and Remote Sensing, IEEE, December 2015.

[28] Fernanda Lima Kastensmidt,. Lucas Tambara,
Eduardo Chielle, Jorge Tonfat and André Flores, “Using
Programmable System on Chip for Aerospace
Applications” in Single Event Effects (SEE) Symposium
/Military and Aerospace Programmable Logic Devices
(MAPLD) workshop, La Jolla, CA 2016
(https://www.seemapld.org/2016/)

BIOGRAPHY
Irene Wang is a current senior at the
California Institute of Technology and will
graduate in 2018 with a B.S. in Computer
Science. Beside her academic career, she
was a fellow of the 2017 Caltech Summer
Undergraduate Research Fellowship
(SURF) and is a fellow of the JPL Year

Around internship performing research in the JPL
adaptive embedded systems Lab that leads to the
development of high performant computing, intelligent,
autonomous and adaptive instrument avionics technology
for hyperspectral imagers based on System-on-Chip (SoC).

Danny Tran is currently a sophomore at
the University of California, Irvine and
will graduate in 2020 with a B.S. in
Computer Science and Engineering. He
began his fellowship at JPL under the JPL
Year Around internship back in August
2017 in the adaptive embedded systems

Lab under the guidance of Didier Keymeulen. During his
time at JPL, he has developed software to process, verify
and validate data produced by hyperspectral imagers
instrument avionics based on System-on-Chip (SoC).

Didier Keymeulen received the BSEE,
MSEE and Ph.D. in Electrical Engineering
and Computer Science from the Free
University of Brussels, Belgium in 1994. In
1996 he joined the computer science
division of the Japanese National
Electrotechnical Laboratory as senior

researcher. Currently he is principal member of the
technical staff of JPL in the Flight Electronics Section. At
JPL, he is responsible for DoD and NASA applications on
evolvable hardware for adaptive computing that leads to
the development of intelligent, autonomous and adaptive
instrument avionics technology. He participated also as
test electronics lead, to Tunable Laser Spectrum
instrument on Mars Science Laboratory. He served as the
chair, co-chair, and program-chair of the NASA/ESA
Conference on Adaptive Hardware.

http://agilemanifesto.org/
http://avirisng.jpl.nasa.gov/
http://prism.jpl.nasa.gov/
https://airbornescience.jpl.nasa.gov/instruments/hytes
https://www.alpha-data.com/esp/
https://www.seemapld.org/2016/

 11

Elliott Liggett is an Analog Circuits and
DSP engineer specializing in Imaging
Spectroscopy applications at the Jet
Propulsion Laboratory. An active ham
radio operator since he was a teenager,
Elliott has an extensive background in

hands-on analog design. Before receiving his bachelors in
EE at the University of Arizona in 2012, he worked as an
independent consultant in the music production industry,
designing equipment and software. At the University of
Arizona, he worked under Dr. Chris Walker in the Steward
Observatory Radio Astronomy Lab on SuperCam, a 64
pixel superconductor THz receiver.

Matthew Klimesh received B.S.E., M.S.E.,
and Ph.D. degrees, all in electrical
engineering from the University of
Michigan in Ann Arbor, in 1989, 1990, and
1995, respectively. He spent one year as a
research fellow (postdoc) at Michigan.

Since 1996 he has been with the Information Processing
Group at Caltech's Jet Propulsion Laboratory, working
primarily on research and development of data
compression algorithms for space applications. He is a
primary developer of the Fast Lossless and FLEX
algorithms for compression of hyperspectral imagery and
co-developer of the ICER image compression algorithm
and software that has been used on multiple space missions
including the Mars Exploration Rovers.

David Dolman David Dolman MEng.
MIET, graduated from Edinburgh
University UK. He has spent 10 years
working with Alpha Data Parallel
System Ltd. in Scotland in the fields of
board design, testing, software, drivers,

firmware, and RTL/HDL based FPGA design. Here he has
lead the development of a number of software and FPGA
based application frameworks, supporting devices from
Virtex 2 to the latest Xilinx FPGA devices include the Zynq-
7000 SoC. Over the last 3 years he has consulted with JPL
(working for Alpha Data Parallel System Ltd.) to advise
on, and architect, FPGA designs and software APIs for a
number of applications in the area of Hyperspectral image
acquisition and data compression.

Daniel Nunes (Ph.D., Earth and
Planetary Sciences, Washington
University (2004); M.A, Earth and
Planetary Sciences, Washington
University (2000); B.S., Astronomy,
University of Kansas (1997)) is a
Research Scientist in the Science

Division, Geophysics and Planetary Geosciences Group at
JPL. In addition to his planetary geophysics research, he

worked in the initial development and field deployment of
the off-line verification software for airborne
hyperspectral imagers. He is currently working as the
Investigation Scientist for both the SHARAD and the
RIMFAX ground-penetrating radar instruments,
respectively on the Mars Reconnaissance Orbiter (MRO)
and the MARS2020 missions.

Peter Sullivan is an electrical engineer
specializing in mixed-signal design and
infrared instrumentation at the NASA Jet
Propulsion Laboratory. He has previously
worked at the Johns Hopkins Applied
Physics Laboratory and holds a B.S. from

Cornell University and a S.M. from the Massachusetts
Institute of Technology. He has characterized image
sensors for applications ranging from Earth science to
exoplanet detection.

Michael Bernas is an electrical engineer specializing in
mixed-signal design for FPA applications related to

imaging spectroscopy at the NASA Jet
Propulsion Laboratory. He holds a B.S.
from University of California, Santa
Barbara and a M.S. from the University of
Southern California. He has previously
worked on a 5 megapixel IR camera at
Lockheed Martin Santa Barbara Focal

plane.

Michael Pham is currently a senior at the
University of California, Los Angeles, and
will graduate in 2018 with a B.S. in
Electrical Engineering. He began his
fellowship at JPL under the Caltech
Summer Undergraduate Research
Fellowship (SURF) program in June 2015

in the Adaptive Embedded Systems lab under the guidance
of Daniel Nunes and Didier Keymeulen. During his time at
JPL, he has developed MATLAB software to process,
verify, and validate data produced by airborne
hyperspectral imagers such as AVIRISng, PRISM, and
HyTES based on server computers.

