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@@4@“ Background

* NISAR: NASA-ISRO Synthetic
Aperture Radar (SAR) mission

» Science Focus: solid Earth land
mass, ice masses and ecosystems

« 747 km Low Earth Orbit
« Three year mission

« Two independent SAR payloads on
spacecraft

* L-band: NASA
« S-band: ISRO
 Active jointly or separately

* ISRO bus, operated by ISRO
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@/ “A-- Onboard Storage as a
sHdl|izFa Store-and-Forward Message Queue

« Data buffered to an on-board
recorder before transmission to
ground

* ISRO and NASA ground segments
are not federated

 Variable routing polices for data —

NASA, ISRO or both - Message queue-like ISRO Ground
- Deletes deferred until after playback SAR \:( — Stateeco |yl Seoment
. . MM
to the all destinations g 1\ Recorder T NASA Cround
SAR Segment
« Cannot play back S-band and L-
band ﬁIeS at the same tlme Publishers ---------------—-————- » Subscribers
« Difficult to predict when a file will be
played back
« Two playback priorities (urgent,
non-urgent) with preemption p

© 2017 California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.



@6‘4‘5"—:‘ Discrete File Deletion Example

* 0-100 seconds: 6 files recorded
concurrently

* 120-270 seconds: Concurrent Deletes 1,2
playbacks to NASA

« Cannot delete yet — must also play
back to ISRO

05| -1

0.3

||
al

« Concurrent playbacks to ISRO

021 /- EEESSSES__

Deletes 3,4

« 460 seconds: Second file deleted AVAREEN e R
- B

* 510 seconds: Third file deleted 0 100 200 300 400 600

Seconds into schedule

» 425 seconds: First file deleted

Terabits on data recorder
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State of the Art

Piecewise linear integrals in ASPEN Eagle Eye A free is long and slow — each bit freed as

(Knight, Donnellan and Green, 2013) and it is played back. NISAR has deferred,

CLASP (Knight and Hu, 2009). instantaneous free events.

Forward dispatch greedy playback scheduling  Mars Express planners choose which

for Mars Express (Cesta et al. 2002) buffer to drain when, but cannot change
the observation schedule. NISAR planners

Linear programming solution for playback can change the observation schedule, but

schedule generation on Mars Express (Righini  not the playback rules.
and Tresoldi 2010)

Discrete fill/drain reservations in Rosetta’s max Same as Mars Express: NISAR’s
flow model (Rabideau et al. 2016) observation schedule is flexible, but
playback policies are fixed behavior.

Soil Moisture Active/Passive (Choi, 2012; SMAP files deleted by ground operators;
Deems, Swan and Weiss, 2012) NISAR autonomously deletes. SMAP has
simpler, greedy observation scheduling.
{ =
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Propagating Reservations:
Piecewise Linear Integral Model

S .

* Insufficient to only consider

recorder state at t;
* Must propagate changes forward
(or capacity backward) to check
feasibility of a reservation Recorder capacity Commitment
oroken .
100% f-=============-~- b
Original

- Similarly, propagate drain activities
(playbacks) for future capacity
commitment

New
reservation

> Time

{/5’
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@/ “A-- Intermediate Fidelity Recorder Model:
el |i5FE Advancing Frontier Forward Dispatch Scheduler

Algorithm 1 Forward dispatch playback scheduling

« Use the observation schedule from

O < sORT(Observations, by time, ascending)

the piecewise linear model as a t, < to @ > Failure rollback limit
: : failed, success <
starting point AT
. . by <ty > Propagation start
- Simulate execution of the NISAR 2“:% ACCREGATESIZE(0) )
solid state recorder as a forward ‘ iii’fm@ g T econden reservation
dispatch SCheduler for all ¢ € o.channels do

f < GETFILEOROPENNEW(0, ¢)
if t, > f.start then t, < f.start

 Incremental: place a reservation, end if
retract future playbacks to t,, re- f-append (0, c)
) journal.append (f, o0, c)
simulate future playbacks, evaluate end for
ihili ROLLBACKTO(%,)
feaSIbIIIty if PROPAGATEDPOWNLINKs(tp) then

success.append ()
by 1, > Update failure rollback limit
else
failed.append (0)
Established | Replanning  Unplanned ROLLBACK (journal)
) ROLLBACKTO(¢,)
> Time PROPAGATEDOWNLINKS(¢,.)
end if
to t,—> else
failed.append (o)
end if {/“s’
end for ﬂ!@émAB
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/ﬁ Experiment:
Y serdl|isra How significant are deferred delete effects?

Produce a schedule using Squeaky
Wheel Optimization (Joslin and
Clements 1999)

Analyzer
“I:rilolritlyl(::elu.e. IIIIIIIIIIIIII‘ISI(::i:lJll(;IIIE . SChedUI'e in' p”o“ty Order’ Within
y QERENNRRENE geometric visibilities, when
= = sufficient recorder capacity exists
: : (linear integral model)
n

aGreedy - Sufficient Capaiy £ - Insufficient recorder capacity is a
E . . = form of schedule saturation;
g oA (o5 B observations that fail to schedule
E E get a priority increase (blame)
SRR s, penair final schedule by removing

Postprocessing y observations that exceed capacity

in the intermediate model

Intermediate Fidelity SSR Model

Repaired schedule * If repairs are needed, deferred
é deletes are significant o s
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@ %ﬁg‘ﬁ Resuits

« Schedule repairs were needed 6000 .
(repaired version below) % 5000 BN NASA |
E 4000 B ISRO ||
» 3.87% (151 of 3902) observationsina 5 3000 Max age: 34 hours-
12 day simulation would have E 2000 I
exceeded capacity = T
. . 0 5 10 15 20 25 30 35
» Longest file lifespan: 34 hours File age at playback end [hours]
B | | I I |
'E 1 1
8 8:_________ _____:________ e ______________"T_.__.____________ Lo LT LT r .______________
L
oGRS MR CE P 1 T T PO O . R S || 1 (1 VY Riry ERRLL NS 0 [ e
©
©
S 4b-f T L LS i | LENE EERRERRRELS SRR
2 E
g 2T T T
© .
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0 | | | | |
0 2 4 6 8 10 12

Days into schedule
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When to use the Intermediate Fidelity Model

.Illllllllllllllllllll‘ Replannlng near the frontler makes
= Analyzerg  the intermediate fidelity model slow

|
Il
Intermediate Fidelity SSR Model E ° We ChOSQ forward diSpatCh |
= because it has O(n) complexity
:
| . .
5 ° Anytime scheduling would have
- = been O(n2)
Priority Queue <INNNRAQERNEERRRERERER _ _ _ _
zSCheduIe « Wrapping anytime scheduling in a

AVANRENARRRNNARNNNARNENNRRNRNRRRURNRRARARE  |oop over multiple opportunities

= = could be O(n4)
=+ Recommendation: Use the
EGreedy S Sufficient Capacity = intermediate fidelity model no more
= = than once per squeaky wheel
Bl reservations (e = jteration (in analyzer), in a forward-
E Drain reservations E dispatch manner.
- :
;IIIIIIIIIIIIII Illlls
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B ém/i‘?ﬁ Recommendations for Future Work

- Consider alternative repair actions
« Split a file if the fragment could be played/deleted sooner

« Consider a lower-data rate mode when the recorder is near capacity

* Implement the Rosetta max-flow file model (Rabideau et al. 2016) as a
compromise between the linear integral model and the intermediate fidelity
model

» Files reserve their entire space instantaneously

* File reservations are automatically freed at the last possible final playback end
time, assuming no preemption

» Has the speed of the piecewise linear model with the deferred deletion effects of
the intermediate fidelity model

« Source: one of our paper’'s anonymous reviewers

« Consider applying a configuration space to the linear integral model’s
capacity so that its schedules do not require a repair by the intermediate

fidelity model <
4 NIS AR

Mission s~

© 2017 California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.



@Wg‘ﬁ Conclusions

+ Discrete deletion effects are non-negligible: treating the recorder as a
continuous drain device can produce infeasible schedules

* Intermediate fidelity model is too slow for use in every observation
scheduling decision, but fast enough to evaluate a schedule once per
squeaky wheel iteration

« Applying a configuration space the linear integral model or replacing it with
a worst case file lifespan reservation may be sufficient to keep the output

schedules feasible
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Questions?

NIS/{\/E}

NASA - ISRO SAR Mission s
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Backup

«  Downlink propagation algorithm

« References

"’/“ﬁ
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&1~

Downlink Propagation Algorithm

Algorithm 2 Propagating downlinks

function PROPAGATEDOWNLINKS(?,,)
for all g € ground segments do
tt,
W < GATHERDOWNLINKS(g, )
repeat
W < W .intersectWith(¢, W.end)
f + g.queue.front() > Next file
t < FINDNEXTSTART(g,t, f, W)
finished, tenq < PLAY(g,t, f, W)
if finished then
g.queue.pop()
if PLAYEDTOALLRECIPIENTS(f) then
recorder.unreserve( f.size, tend)
end if
end if
until g.queue empty or W empty or t >ty
end for
return recorder.hasNoViolations()
end function

* Returning false means that there is
still a data recorder
oversubscription that was not
corrected by propagating all
downlinks at or after t;
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