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Computational challenges in Euclid

• Systematic effects will dominate the error budget for weak lensing 
measurements in Euclid (shape measurements, photometric errors, selection 
function, theoretical predictions…).

• These can be better understood using mock galaxy catalogues.

• Standard N-body simulations demand large computational resources 
(cpu+storage).

• We need efficient techniques to produce high-level data catalogues.

1



The need for approximate methods

• Problem
• Estimate covariance matrices for weak lensing and clustering

• Provide mock catalogues to calibrate and validate analysis pipelines

• Requirements
• Sample large volumes (tens of Gpc3)

• Produce massive ensembles of realizations (>103)

• Explore different cosmologies or gravitational models

• Solution
• Identify the optimal balance between accuracy and speed-up for this problem

• Develop fast methods that allow generating the required number of 
realizations
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Galaxy catalog pipeline
• The COLA method (Tassev et al 2013): incorporates a theoretical description of 

the evolution of the matter density field in a numerical cosmological simulation.

• Speed-up thanks to using a cheaper and faster numerical integration.

• Parallel COLA (Koda et al. 2015)
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Optimal set-up for weak lensing covariances
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Matter power spectrum

• 20483 particles run on 1024 cores 
in <1h (2.7 Tb memory)

• Matter power spectrum: 1% 
agreement up to k ~ 1 h/Mpc

• Mass function: 5% accuracy



Light cone geometry
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2D projected matter map 
Healpix discretization 
(265x50M pixels)

Halo catalog

On-the-fly



Weak lensing pipeline
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SIMULATION

20483 particles
Lbox = 1536 Mpc/h
mp = 3x1010 Msun

z. ≤ 1.4
All sky

2 box replicas (64 total)

1024 cores
~2h / run

~300 realizations

Projected matter density field (2D, Healpix format)
On-the-fly
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Weak lensing pipeline
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SIMULATION

20483 particles
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1024 cores
~2h / run

~300 realizations
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with 
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Convergence power spectrum
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Tangential shear
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Correlation between the orientation of 
galaxy shapes in the background and 
the distribution of foreground galaxies

~1Mpc/h at z=0.5

nside = 2048
nside = 4096
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HALOS
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HALOS

SUB-HALOS

Subhalo mass function
NFW profile
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HALOS

SUB-HALOS

GALAXIES
- Physical 

parameters
- Observable 

properties

Subhalo mass function
NFW profile

Ghost
(Bull 2016)

WL
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Modeling systematic effects on WL

• Cosmic shear measurements are affected by:

• Shape uncertainties

• Photometric redshift errors

• Survey selection function

• These may vary across the sky and in a coherent way, 
affecting both the signal and the covariance matrix

• We model the conditional probability
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Euclid footprint (Euclid Consortium)



Covariance matrices

• Provisional results
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Plot of a 
covariance matrix



Feedback! 

What are the priorities and concerns in Euclid for 
observational systematics in covariance estimation?

albert.izard.alberich@jpl.nasa.gov
albertiz@ucr.edu
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Shear correlation functions
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The COLA method
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COmoving Lagrangian Acceleration (Tassev et al. 2013):



Comparison with other approximate methods

PROS
✓ Large scale dynamics is exact 

✓ Accuracy at small scales is adjustable

✓ 2-3 orders of magnitude faster than conventional N-body simulations

CONS
❖ Large memory consumption

❖ Not as fast as fast methods using biasing prescriptions
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