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Tile decompositions are slow

This tile coverage plan for a steerable 2D framing sensor

Desired Sun direction
(in YZ plane)

Earth

required 50.3 seconds runtime —

to compute.
. surf int t Hayden, I. 2013. ALL-STAR structure
ur ace_m ercepts overview. Image courtesy Colorado Space
« Constraint checks Grant Consortium. Used with permission.

© 2017 California Institute of Technology. ALL RIGHTS RESERVED. United States Government

Sponsorship acknowledged. ! Jpl.nasa.gov



Motivation: higher level schedule optimization

* Problem: optimization requires comparing different schedule
times.

 n3 permutations for n area observations if we use insertion search
with time propagation
* n=10 requests would need 14 hours runtime
» Approximation: use a heuristic
* Defer tiling until the very end

- Make a guess of total schedule time and memory needed to
satisfy the tiling, reserve as a block

» Faster to compute: 50.3s - 0.0053s
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But heuristics can be tricky...
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The Naive Heuristic is a poor
predictor of actual spacecraft
resources needed.
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Outline
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Formulation

Duration and memory are still quantities to be estimated

d = f4(t,target, observer, algorithm)
m = f, (t,target, observer, algorithm)

... Just do it less naively.
- Exhaustively sample the system
» Choose better features
- Machine learning to discover the model
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Tile area changes over time
Choose better features: domain-specific insight

« Relative motion and rotation
between the observer and
184 . . . the target
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Solar orientation policies
Choose better features: domain-specific insight

Desired Sun direction

(in YZ plane) » The Sun moves relative to
the observer

* |ldeal solar alignment may
cause poor tiling

- Possible features: solar
elevation angle, phase angle

T

Hayden, I. 2013.
ALL-STAR structure
overview.

Image courtesy
Colorado Space
Grant Consortium.
Used with
permission.
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Geometric features
Choose better features

* Point
- Off-nadir angle
- Solar off-zenith angle
« Cross-track angle
 Along-track angle

* Area
- Target area a

* Instrument tile area
derivative

AIFOV

* Perimeter-based

* Inspired by Greene’s
theorem: trace perimeter

+ Slew time line integral

3§p dtslew

* Instrument tile area line

integral

dp

Target

¢ darrov
$p dp ',"i\\
<\’\\\

© 2017 California Institute of Technology. ALL RIGHTS RESERVED. United States Government

Sponsorship acknowledged.

8 jpl.nasa.gov



Computational complexity of features

- All time-varying except target
polygon area a
* p: number of vertices in

Feature Complexity

Off nadir angle O(1) target polygon
Solar off-zenith angle O(1)

Cross-track angle O(1)

Along-track angle O(1)

$p darrov O(|p|)

b dtsion O([pl)

Polygon area a O(|p)

POV O(1)
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Machine Learning Models Considered

« Ordinary Least Squares - Empirical Conditional
argmmz 20, 0) + B — yi)? Expectatlon
E(Y0,6) =) yp(ylo, ¢
yeD
« Support Vector Regression
(Smola and Vapnik 1997) - Generalized Regression
. Linear kernel Neural Networks (Specht
- Radial Basis Function (RBF) 1991)
kernel (2 X,Y) = Sl yiexp (—(z — z;)/20?)

>.i exp (—(z —z)/20%)
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Experiment

Random (uniform) sampling of
2000 target polygons

-« Center location

 Area U(0,10000 km?)

Sample the system
» Compute detailed tiling
* Record features X at

* Measure response variables
Y=(d,m) after scheduling

Produce models Y=f(X)

Evaluate models
Image Landsat / Copernicus

Image IBCAO | '. . Eat X * 60 iterations random
subsampling, 80%/20%
Corpus (white circles) training/test split (Han and
Kamber 2006)
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Results
Good Features

Table 2: Coeflicients of Determination

Feature

Area line integral
Slew line integral
Off-nadir angle
Area

aTFOV

Along-track angle
Solar emission angle
Cross-track angle

Duration
0.89
0.78
0.43
0.32
0.12
0.08
0.07
0.00

Memory

0.92

0.81
0.44
0.33
0.12
0.07
0.07
0.00

—

Memory m [kilobits]
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Results
Bad Features

Table 2: Coeflicients of Determination

Feature Duration | Memory
Area line integral 0.89 0.92
Slew line integral 0.78 0.81
Off-nadir angle 0.43 0.44
Area 0.32 0.33
AIFOV 0.12 0.12
Along-track angle 0.08 0.07
Solar emission angle 0.07 0.07 |
Cross-track angle 0.00 0.00
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Results
Model Comparison

 GRNN, OLS, SVR have
similar accuracy

« ECE and Naive heuristic are
least accurate

Duration [s]

Table 3: Mean error (x) and RMSE (o)
of models in estimating duration, features:

arrov, $p darrov.

e,FOV

r 1000

Train Test 800 &
Model L o 7 o 600 g
OLS 0.00 55.61 | -0.65 54.88 400 3
Linear SVR | -3.82 55.62 | -3.66 57.60 200
RBF SVR -2.23  52.83 | -3.26 52.59 0
ECE 0.00 37.48 4.24 81.23
GRNN 1.44 48.00 | 1.31  52.56 L * GRNN
Naive 0.00  0.00 | 51.81 173.02 T ) e

S 05 R
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Comparing different feature sets

Table 5: Mean error () and RMSE (o) of OLS models by feature set (test only).

Duration [s] | Memory [kbits]
Feature Set L o ] o
(}'IFOV; 5151'3 dn‘IFOV -0.01 H4.94 0.23 34 .28
aIFov, fp daIFOVZ jgp dtslew 0.52 45.65 0.08 24.84
Off nadir angle, ¢, dtgew 0.07  61.44 | -0.05 40.02
Off nadir angle, Solar angle, §, dtsew | 0.23  61.64 | -0.32 40.11
a1rov, $p dtsiew -0.17  70.81 | 0.12  49.65
Off nadir angle, Solar angle -0.89 126.55 | -1.07 92.42
Cross-track angle, Along-track angle 1.93 163.59 | -1.47 117.80

« The most accurate OLS model used both of the perimeter integral
features

« Even adding only one perimeter integral was significantly better
than using all constant-time features
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Recommendations for Future Work

- Metaheuristics/portfolio approach (Engelhard and Chien 2000,
Cowling, Kendall and Soubeiga 2000).

« Make more models from more features

» Choose the model(s) most likely to succeed for the observational
being estimated

- Examine log-features
- Area is quadratic, so log(area) may linearize better
» May provide better fits for OLS models
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Conclusions

All machine learning models were more accurate than the
naive heuristic

Worst: Empirical Conditional Expectation (ECE)
Best: Generalized Regression Neural Network (GRNN)

- Slowest to generate and evaluate

 Recommend GPU or other specialized hardware
Least Squares (OLS) is probably good enough

- Faster to generate and evaluate

+ Less complicated to implement, no special hardware
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