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Tile decompositions are slow
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This tile coverage plan for a steerable 2D framing sensor

required 50.3 seconds runtime 

to compute.
• Surface intercepts

• Constraint checks

Hayden, I. 2013. ALL-STAR structure 

overview.  Image courtesy Colorado Space 

Grant Consortium. Used with permission.
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Motivation: higher level schedule optimization

• Problem: optimization requires comparing different schedule 

times.  

• n3 permutations for n area observations if we use insertion search 

with time propagation

• n=10 requests would need 14 hours runtime

• Approximation: use a heuristic

• Defer tiling until the very end

• Make a guess of total schedule time and memory needed to 

satisfy the tiling, reserve as a block

• Faster to compute: 50.3s →  0.0053s
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But heuristics can be tricky…

Naïve Heuristic (area ratio):

Memory:

Duration:
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The Naïve Heuristic is a poor 

predictor of actual spacecraft 

resources needed.
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Outline
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• Methodology/Experiment

• Results

• Recommendations for future work

• Conclusion
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Formulation

Duration and memory are still quantities to be estimated

... just do it less naively.

• Exhaustively sample the system

• Choose better features

• Machine learning to discover the model
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Tile area changes over time

• Relative motion and rotation 

between the observer and 

the target

• Also sensitive to off-nadir 

angle (skew effects)

Choose better features: domain-specific insight
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Solar orientation policies

• The Sun moves relative to 

the observer

• Ideal solar alignment may 

cause poor tiling

• Possible features: solar 

elevation angle, phase angle

Choose better features: domain-specific insight
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Hayden, I. 2013. 

ALL-STAR structure 

overview.

Image courtesy 

Colorado Space 

Grant Consortium. 

Used with 

permission.
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Geometric features

• Point

• Off-nadir angle

• Solar off-zenith angle

• Cross-track angle

• Along-track angle

• Area

• Target area a

• Instrument tile area 

derivative

• Perimeter-based

• Inspired by Greene’s 

theorem: trace perimeter

• Slew time line integral

• Instrument tile area line 

integral

Choose better features
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Computational complexity of features

• All time-varying except target 

polygon area a

• p: number of vertices in 

target polygon
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Machine Learning Models Considered

• Ordinary Least Squares

• Support Vector Regression 

(Smola and Vapnik 1997)

• Linear kernel

• Radial Basis Function (RBF) 

kernel

• Empirical Conditional 

Expectation

• Generalized Regression 

Neural Networks (Specht 

1991)
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Experiment

• Random (uniform) sampling of 

2000 target polygons

• Center location

• Area U(0,10000 km2)

• Sample the system 

• Compute detailed tiling

• Record features X at

• Measure response variables 

Y=(d,m) after scheduling

• Produce models Y=f(X)

• Evaluate models

• 60 iterations random 

subsampling, 80%/20% 

training/test split (Han and 

Kamber 2006)
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Results
Good Features
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Results
Bad Features
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Results

• GRNN, OLS, SVR have 

similar accuracy

• ECE and Naïve heuristic are 

least accurate

Model Comparison
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Comparing different feature sets
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• The most accurate OLS model used both of the perimeter integral 

features

• Even adding only one perimeter integral was significantly better 

than using all constant-time features
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Recommendations for Future Work

• Metaheuristics/portfolio approach (Engelhard and Chien 2000, 

Cowling, Kendall and Soubeiga 2000).

• Make more models from more features

• Choose the model(s) most likely to succeed for the observational 

being estimated

• Examine log-features

• Area is quadratic, so log(area) may linearize better

• May provide better fits for OLS models
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Conclusions

• All machine learning models were more accurate than the 

naïve heuristic

• Worst: Empirical Conditional Expectation (ECE)

• Best: Generalized Regression Neural Network (GRNN)

• Slowest to generate and evaluate

• Recommend GPU or other specialized hardware

• Least Squares (OLS) is probably good enough

• Faster to generate and evaluate

• Less complicated to implement, no special hardware
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