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Abstract— Autonomy is an increasingly important technology 
for robotic scientific and commercial spacecraft.  An important 
motivation for developing onboard autonomy is to enable quick 
response to dynamic environment and situations, including fault 
conditions that a spacecraft may encounter.  The reliability of 
such autonomous capabilities depends on the quality of their 
knowledge of a spacecraft’s health state. Model-based 
approaches to fault management, i.e. model-based fault 
diagnosis (MBFD), is one approach to continuously verify 
correct behavior in addition to diagnosing symptoms to estimate 
the spacecraft’s health state. 

The proper functioning of MBFD is dependent on 1) the quality 
of the model that is analyzed and compared to the outputs of on-
board sensors to estimate the system’s health state, and 2) the 
correct functioning of the diagnosis engine that interrogates the 
model and compares its analysis to observed system behavior.  
We are currently developing Verification and Validation (V&V) 
approaches to provide the necessary confidence that MBFD 
systems are correctly estimating the health of on-board 
spacecraft components and systems.  Our work is intended to 
narrow the gap between the rapidly maturing field of Model-
Based System Engineering (including MBFD) and the less-well 
understood area of identifying and applying appropriate V&V 
techniques to MBFD. 

Our effort is investigating three areas: 1) developing V&V 
techniques for the diagnostic model, 2) developing V&V 
techniques for the diagnostic engine in isolation, and 3) 
developing V&V techniques for the diagnostic engine and model 
in combination.  This paper describes the work we have 
completed in the first area.  We describe our approach to 
selecting a system to be represented by a model, the approach to 
modeling the system, the verification approach we developed for 
the model, and the results of the verification activity. We 
conclude with a description of the work remaining in the last 
two areas, which will be addressed over the next two years. 
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1. INTRODUCTION 
Current state-of-the-art at JPL and across the aerospace 
industry [1] is to use monitors and responses to detect 
symptoms of off-nominal conditions after faults occur, and to 
respond with pre-defined sequences (see Figure 
1).  However, these symptom-based approaches can be fooled 
by sensor failures and environmental variation, or by 
commands that may intentionally put the system into an off-
nominal state.  In fact, monitors and responses are often 
turned off during highly critical events due to potentially 
incorrect fault identification and response.  This approach 
also cannot verify healthy behavior, but only detects pre-
defined failures that are being monitored.  It is also prone to 
design escapes if a fault has not been considered during 
design time.  

Model-based fault diagnosis (MBFD), on the other hand, 
diagnoses based on a model of how hardware components are 
expected to function and compares multiple sources of 
information (e.g., sensors, commands and relationships to 
other components) to establish the health state of each 
component.  However, these approaches have only 
been demonstrated twice on flight missions (i.e., DS1 [2] and 
EO-1 [3]): although the demonstrations were very promising, 
this approach has not been formally verified or validated. 
Another example is a model-based system very similar to the 
one chosen for this work which was integrated with actual 
spacecraft FSW and ported to an engineering model of a late 
1990’s era flight computer. In hardware-in-the-loop (HWIL) 
tests this system was able to diagnose simulated faults in real 
time with significant margin in computing resources [4]. 
Although this was another successful demonstration of a 
MBFD technique, it did not provide full verification of the 
system. 

The effort described in this paper is to develop Verification 
and Validation (V&V) approaches for a MBFD system that 
ensures it is correctly estimating the health state of on-board 
hardware components. Our objectives are: 

• Develop and demonstrate techniques for checking 
MBFD correctness and coverage/completeness.  The 
result will be a systematic way to verify MBFD 
correctness which will provide greater confidence than 
current V&V practices do for monitor/response systems. 
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• Develop and demonstrate MBFD performance analysis 
techniques (e.g., false-positive and false-negative 
diagnosis rates).  The result will be a systematic way of 
analyzing MBFD performance that will provide greater 
confidence than what current practice provides for 
monitor/response systems.  The structure of the 
diagnostic models and the way in which they interact 
with the diagnostic engine will provide information to 
improve model performance that would be difficult for 
monitor/response systems to provide. 

 2. BACKGROUND 
Autonomy has been identified as a critical emerging area for 
JPL.  One motivation for desiring onboard autonomy is to 
enable quick response to anomalies and dynamic 
environmental conditions and science opportunities. The 
reliability of such autonomous capabilities hinges on the 
quality of its knowledge of a spacecraft’s state of health.  
However, current monitor-response Fault Management (FM) 
approaches (see Figure 1) do not diagnose the health state, 
but simply respond to a pre-identified set of symptoms from 
the sensor data. In situations not conforming to such well-
defined cases, current FM approaches provide no information 
of system health, performance, or availability, and are thus 
inadequate for the needs of autonomy.  In contrast, model-
based approaches to FM, i.e. model-based fault diagnosis 
(MBFD), continuously verify correct hardware behavior in 
addition to diagnosing symptoms to estimate the health state. 
An onboard autonomy capability can then use health state 
estimates to decide how to react (see Figure 2).  As such, 

MBFD is fundamental and foundational to enabling system-
wide autonomy. 

While MBFD has been developed through decades of 
research, the techniques for adequately verifying and 
validating MBFD are not well understood.  Work by Pecheur 
et al. in 2002 [5], [6], [7] has surveyed various approaches to 
V&V MBFD, but there is still work to be done to enable a 
practical means to V&V MBFD. Other approaches have 
focused on simulations for verification [8] and developing 
tool chains [9] to partially automate as well as contain or 
bound the test domain. These approaches encompass system-
level validation while other techniques such as parametric 
testing (using Monte Carlo methods for sensitivity analyses) 
target model validation [10].  As explained in [11], there 
exists a gap between NASA software requirements and 
standards for models in the case where models are part of the 
flight software. This gap makes it difficult to link verification 
of MBFD to requirements and to consider model V&V as a 
separate activity from system-level V&V.      

Hence, this effort will identify and develop verification and 
validation (V&V) techniques that are appropriate for MBFD 
technologies.  Without V&V of MBFD, the estimated health 
state produced by MBFD may be unstable or uncertain, or 
MBFD may cause unacceptable delays or excessive use of 
on-board computing resources. Without proper V&V of 
MBFD, the decisions made by other autonomous systems 
based on the MBFD’s estimated health state will be held in 
low confidence, often necessitating review by spacecraft 
operators, and thus diminishing their value.  Thus, V&V of 
MBFD is the necessary first step in enabling other autonomy 
capabilities. 

3. MODEL-BASED FAULT DIAGNOSIS 
Fault Diagnosis Overview 

A number of promising FM diagnosis techniques have been 
developed over the past several decades to provide faster 
hardware fault diagnosis and more effective responses to 
fault conditions than the currently-used monitor-response 
paradigm.  Many of these results have been reported at the 
International Workshop on Principles of Diagnosis (e.g., 
[12], [13]), which was first held in 1989.  FM techniques such 
as case-based, rule-based, and model-based approaches were 
reviewed for relevance and appropriateness to meet 
embedded real-time constraints that are required for 
spacecraft, rovers and other spaceflight systems. Approaches 
such as case-based and rule-based techniques are based on a 
priori knowledge and characterization of past faults, or 
enumeration of symptoms of known failure modes, and 
therefore are limited by the designers’ ability to capture the 
symptom/fault information. The task of checking the 
completeness/coverage of case-based and rule-based 
techniques is challenging in part due to the many-to-one 
relationship between a symptom and its possible causes, 
which is exacerbated by the number of hardware 
configurations. 

Figure 2 - Model-Based Fault Diagnosis Architecture 

Figure 1 - Traditional monitor-response approach to 
Fault Management 
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Model-based techniques perform system monitoring, fault 
detection and identification by reasoning from first 
principles, based on an understanding, i.e. a model, of how 
the system is expected to perform. These techniques do not 
rely on pre-defined symptoms of failures, and thereby 
overcome the one-to-many relations between a symptom and 
its possible causes. Instead, models follow nominal 
execution, and highlight when a system no longer performs 
as expected. There are a number of model-based fault 
management (MBFM) techniques, each with their strengths 
and weaknesses.  We have chosen an MBFD technique based 
on constraint suspension [14]. 

MONSID Overview 

The Model-based Off-Nominal State Isolation and Detection 
(MONSID) system is an implementation of constraint 
suspension extended to electro-mechanical systems [15], and 
is currently being developed by Okean Solutions under the 
Small Business Innovation Research (SBIR) program.  It was 
first prototyped in the MATLAB/Simulink environment [16] 
and a C++ version intended for deployment.  MONSID 
consists of a core inference engine that diagnoses faults from 
user-supplied models of the system given measurement and 
command data. As shown in Figure 3, measurements and 
command data are fed to the model representing the system. 
Models are made up of interconnected components that 
capture nominal behavior of system elements. In a model of 
a spacecraft, for example, components could represent 
various subsystem hardware such as sensors and actuators. 
These data are then propagated through the models via 
forward (input to output) and reverse (output to input) 
constraints as indicated by the arrows in the figure. Values 
resulting from the forward and reverse propagation are 
compared at component boundaries (nodes). Faults are 
detected by the inference engine when data from sensors, 
commands, and derived from models are no longer consistent 
at a node (typically several nodes). At that point, fault 
isolation begins via constraint suspension, i.e. systematically 

suspending data propagation across model components until 
data at input and output nodes are once again consistent. A 
fault is isolated to a component (or set of components) when 
that component’s suspension results in consistent data 
throughout the model. In other words, if a component 
suspected of having a fault is removed from the model (its 
constraints are not processed) and no node violations occur 
on the remaining components then it must have been faulty. 
Because node discrepancies imply deviations from nominal 
behavior predicted by the models, this method can potentially 
detect anomalous and degraded states in addition to failed 
states. 

4. APPROACH 
In this effort, we investigate the three major facets of V&V 
for MBFD: correctness, completeness and performance. As 
shown in Figure 2, MBFD is composed of two parts, a system 
model that is specific to the system to be diagnosed and a 
generic diagnosis engine that is independent of the system to 
be diagnosed. Due to this key characteristic of MBFD, it is 
sufficient to check the correctness and completeness of the 
system model independently from the correctness and the 
completeness of the diagnosis engine.  For performance, 
however, a system model and a diagnosis engine cannot be 
checked independently since the performance of a MBFD is 
a function of the diagnosis engine properties, the model size, 
and the model complexity. Over the course of this effort, we 
are developing approaches to checking the correctness and 
completeness separately for system models and diagnosis 
engines and developing approaches to checking the 
performance of MBFD as a whole.  We are demonstrating the 
newly developed techniques on MONSID [16], which, in 
addition to this work, is also being used on JPL’s research 
and development of autonomy capabilities. 

System Model Overview 

This year’s effort focused on identifying techniques to 
determine the correctness of system models to be queried by 
the diagnostic engine.  Our goal was to demonstrate the 
feasibility of determining model correctness by adapting 
acceptance and integration tests procedures and results used 
to evaluate flight and engineering units to the verification of 
the models.  Reviews of current missions and discussions 
with engineers for those missions led us to focus on the Soil 
Moisture Active Passive (SMAP) mission [17], an Earth 
science mission designed to measure and map Earth's soil 
moisture and freeze/thaw state to better understand terrestrial 
water, carbon and energy cycles.  Based on the discussions 
with the SMAP Fault Protection engineer, we have 
determined that fault protection issues related to Guidance, 
Navigation, and Control (GNC) would be a good candidate 
for the following reasons: 

a. All missions encounter important GNC issues. In 
particular, the fielded behavior of GNC hardware may 
differ from that expected during design, especially when 
the hardware is operating in off-nominal conditions. 

Figure 3 - Model-based fault detection and isolation 
checks system data consistency at component nodes and 
systematically determines which component caused the 
off-nominal condition. 



 

 4 

b. Unlike other areas, GNC systems and components tend 
to have similar behavior from mission to mission, 
although components (e.g., Inertial Reference Units 
(IRUs) or Stellar Reference Units(SRUs)) might not 
behave identically.  However, they are often similar 
enough that adapting models from one mission to 
another is expected to be straightforward.  By contrast, 
areas such as avionics tend to have much more mission-
specific behavior. 

c. Although each mission has specific GNC challenges 
(e.g., a spinning antenna for SMAP), there are many 
commonalities that can be modeled.  For example, nearly 
every mission needs to deal with situations in which 
different sensors provide different information.  For 
example, the IRU may be indicating that the attitude is 
within expected limits, while the SRU may indicate 
otherwise. 

We decided to develop a simplified model of the SMAP 
mission GNC subsystem consisting of four types of hardware 
components – an Inertial Reference Unit (IRU), the Reaction 
Wheel Assembly (RWA) and associated tachometers 
(TACH), and the Stellar Reference Unit (SRU).  Despite its 
simplicity, the model provides a useful example from a real 
mission having real fault protection issues identified with it.  
Figure 4 shows one of the components we constructed, in this 
case the IRU.  This component was implemented in the 
Simulink version of MONSID. 

Developing System Models 

The models of the SMAP GNC components and the 
simplified GNC subsystem were developed using 
information from the SMAP mission library, including 
Functional Design Documents (FDDs), design 
documentation, and supplier specifications (all three GNC 
components were acquired from outside suppliers). 

The most time-consuming aspect of the model-building task 
was identifying and retrieving the information required to 
construct the models.  We attribute this to two factors.  First, 
none of the team members have the same level of familiarity 
with GNC systems as the mission developers.  Second, the 
models were developed after the mission itself was launched, 

and the development teams had moved to new tasks 
supporting other missions, resulting in significant effort to 
search for archived information.  Since the morphology and 
level of detail of the models we developed are similar to those 
developed for SMAP and other missions, we are confident 
that future missions developing or adapting diagnostic 
models will need significantly less effort than we required, 
since domain experts will be developing the information 
required to construct the models at the same time the models 
are being developed. 

We identified two issues to keep in mind when developing 
diagnostic models.  First, in addition to describing the 
relationship between the model’s inputs and outputs 
(“forward constraints”) the diagnostic models also need to 
describe relationships between the outputs and the inputs 
(“reverse constraints”).  The diagnostic engine querying the 
model performs a sequential relaxation of these constraints 
when it detects model output that is inconsistent with the 
observed system state until it can identify a set of causes of 
the inconsistency.  Our experience indicates that up until 
now, system models at JPL have been developed to include 
only the forward constraints – there may be some effort 
required by system engineers to learn how to properly include 
reverse constraints. 

Second, there is always the question of the level of 
abstraction at which a diagnostic model should be developed.  
There is no analytic solution to this issue, but some of our 
experience may be helpful.  Models that are too coarse may 
not be able to detect or identify certain classes of anomalous 
behavior, such as slow degradation or progressive resource 
exhaustion.  Models implementing a high-fidelity 
representation of a system component will allow more 
confident and detailed diagnosis of fault conditions than more 
abstract models, but can quickly become too complex to 
query within the required time.  Also, model uncertainties 
may necessitate setting very broad fault detection thresholds 
to avoid false positives at the cost of mis-detecting actual 
faults. The principles for producing a good model discussed 
in [18] can be helpful, particularly the short discussion on the 
“smallest sufficient model.”  As a practical matter, diagnostic 
models may be implemented at varying levels of abstraction, 
with those portions of the model about which there is the 

Figure 4 - MONSID Model of IRU 
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greatest concern about failure-related mission risk being 
specified at higher levels of detail. 

As part of the verification process, it will be necessary to 
demonstrate that the model is able to detect and identify off-
nominal as well as normal operation, meaning that simulators 
and analysis tools used to verify the model must be capable 
of exhibiting off-nominal behaviors. It is extremely unlikely 
that there will be sufficient resources available to examine the 
model’s behavior under all possible off-nominal conditions, 
so it will be necessary to identify those fault conditions which 
analysis or operational and test data from earlier missions 
using the same or similar components indicates pose the 
greatest risks to mission success.  Those fault conditions may 
be found by analyzing anomaly reports from previous similar 
missions, identifying the most commonly-occurring fault 
conditions or those with the greatest effect, then constructing 
a model that will display those behaviors given the 
appropriate inputs.  Fault tree or failure mode effects analyses 
may be consulted in addition to anomaly reports to further 
refine the set of highest risk fault conditions. 

Developing A Model V&V Methodology 

To ensure the correctness of our GNC Model, a robust 
Verification and Validation architecture is aimed to be 
established.  

For our first year’s work, we have adopted the traditional 
methodology to implement verification and validation of our 
models, as shown in Figure 5. In our case, the GNC 
components were designed and implemented based on their 
requirements.  Then the implemented and integrated system 
and its components were verified using the corresponding 
verification methods that include procedures and tests. 
Similarly, we have developed a GNC system model based on 

the functional requirements of the system and its component, 
which will be verified using the corresponding verification 
methods.  

The correctness of a system model can be checked against 
two different reference points: the functional requirements of 
the system and the deployed system itself. During the design 
phase of a mission, the model can be verified and validated 
against the functional requirements and during the operations 
phase of a mission, the model can be validated by checking it 
against the actual telemetry gathered during flight. Our 
current V&V approach allows us to check our model against 
the functional requirements as the reference point. 

Our plan is to execute the following steps using a cohesive 
V&V approach as shown in Figure 5. 

• Identify V&V Procedures: Hardware acceptance test 
conditions and test data will be used to perform V&V on 
the component and system models. For actuator models, 
the inputs to the actual hardware will be commandable 
and outputs will be measurable. For sensor models, 
however, the inputs (other than SW commands) will be 
used using motion and environment data such as rates, 
accelerations, etc. to create test cases.  

• Identify MONSID simulation capability to perform 
V&V: A simulation/execution capability will be used to 
generate the types of inputs and outputs specified by the 
test cases. The simulation capabilities provided by 
MONSID can execute the model to simulate the 
functionality of the corresponding hardware, allowing us 
to use the model as if it were a hardware testbed. The 
model execution engine will run the forward and reverse 
constraints of MONSID models and pass data between 
components in accordance with the model topology. 

• Identify Model constraints: The GNC component and 
system model parameters will be utilized for verifying 
MONSID model correctness. MONSID components are 
developed to model the expected behavior, under 
nominal operating conditions, of physical hardware. 
Because MONSID models translate behavior from 
outputs to inputs (reverse constraints), stimulants 
representing what are normally outputs of the real 
hardware are also needed as inputs to the MONSID 
models. Model outputs (forward constraints) may 
include analog and/or digital quantities depending on the 
type of HW component being modeled. Again, because 
of reverse constraints, model outputs may include 
commands and input power.  

Model Testing 

The procedures to test the MONSID models and compare 
their behavior to that of the SMAP flight units and 
engineering models were developed from test procedures and 
test results from both JPL and the component suppliers.  We 
were able to identify and adapt component and system-level 

Figure 5 - Establishing a V&V Methodology 
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tests developed by SMAP engineers to verify the 
functionality and behavior of the individual components and 
the integrated system for nominal operational scenarios. 

a. Component Level V&V of Model Correctness:  

The MONSID component level is the smallest encapsulation 
of hardware behavior that may correspond to a line-
replaceable unit (LRU) of a spacecraft. Hardware is generally 
verified in the physical system using acceptance tests at 
component level. We have utilized existing hardware 
acceptance tests, or equivalent, to verify MONSID model 
components. In most cases, it was possible to use hardware 
test data directly by feeding into the simulation engine. In a 
few other cases, it was not possible to use hardware test data 
directly either because of the limited functionality of a 
component model or because the required data were not 
available or not in a usable format. Missing or limited 
functionality of any of the MONSID GNC components will 
be enhanced in the future. The existing functionality of each 
of the used GNC components was tested using the following 
validation tests to ensure component level model correctness:   

i) IRU MONSID model validation test:  

The IRU MONSID model is based on the model of the 
Honeywell manufactured Miniature Inertial Measurement 
Unit (MIMU) that processes its 3 axis Ring Laser gyro data 
at 200Hz to provide the inertial measurements of the 
spacecraft. This model outputs 3-axis spacecraft angular 
position as an accumulated angle over a specific duration of 
time. The model includes modeling coning compensation, 
noise, scale factor errors and two levels of quantization.  It 
does not include generation of disturbance forces and torques 
from the internal dither mechanism. 

To test the IRU MONSID model (Figure 4), we chose a 
MIMU phasing test procedure, developed at JPL, that had 
been run on flight IRU and for which the expected and actual 
results had been documented.  Our adaptation of the test 
procedure monitored the following set of IRU forward and 
reverse constraints, which were processed by the IRU 
MONSID forward and reverse simulation scripts: 

• Forward Constraints: Accumulated gyro angles 

• Reverse Constraints: True inertial spacecraft rates, Gyro 
bias 

The objective of testing the IRU hardware was to determine 
whether the IRU could sense known Earth rotation rates in 
different orientations.  This goal was retained when testing 
the IRU MONSID model.   

The true inertial spacecraft rates (Earth rotation rates in this 
case), gyro bias and noise parameters were provided as inputs 
to generate test data for nominal operation. The model output, 
processed as the change in sensed angle divided by the length 
of a time interval (angular rates along 3 axes), was compared 
to the expected values taken from the test procedure used for 
the flight unit.  In this case, the actual results matched the 
expected results, confirming correct nominal behavior for the 
model.  The comparison is shown graphically in Figure 6  

The MONSID model phasing test results showed that the 
forward constraint values match MIMU measured 
accumulated angle as represented the Figure 7. The 
simulation script also processed the comparison of the 
reverse constraints with the test data inputs. Even though 
random noise was the most significant error source, the 
model reproduced similar characteristics. The plots shown in 

Figure 6 - left) MONSID model accumulated gyro angles and S/C rates match SMAP generated 
phasing test plots and right) true S/C rates 
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Figure 8 confirmed that the IRU MONSID model spacecraft 
rates (reverse constraints) converge on true spacecraft rates 
after 0.5 seconds. 

ii) Reaction Wheel Assembly-Tachometer MONSID 
model validation test: 

The RWA-Tach MONSID Model of a reaction wheel unit 
consists of two fundamental pieces at its core, the reaction 
wheel model and the tachometer model. The mathematical 
model of the RWA-Tach MONSID model has been extracted 
from the description of the Honeywell manufactured HR 
series Reaction Wheel Assembly. A torque command, 
encoded as a ±10V analog signal, of specific duration is 
provided as one of the inputs to the RWA-Tach MONSID 
model. Then, the model outputs the torque supplied to the 
reaction wheel and the wheel angles using the RWA block 
and also the corresponding tachometer pulse stream using the 
Tach block, at 8Hz. The tachometer count increments or 
decrements based on the value of the direction signal and will 
wrap to zero from full count when incremented or to full 
count from zero when decremented. Note that the System 
Level GNC Model integrates all four reaction wheel models 
to generate the net torque supplied to the spacecraft. The 

current RWA MONSID model includes viscous friction 
disturbance torque. Highly non-linear effects such as Dahl 
friction were not included in order to reduce model 
complexity.  We may include these additional disturbances in 
future iterations if needed to improve model fidelity. 

To test the RWA-Tach MONSID model shown in Figure 9, 
we chose a supplier provided hardware acceptance test and 
also an existing test procedure, developed at JPL, which had 
been run on a flight model of the RWA-Tachometer 
assembly. For both of the tests, the expected and actual 
results had been documented.  Our adaptation of the test 
procedure monitored the following set of RWA/Tach forward 
and reverse constraints: 

• Forward Constraints: Total wheel bearing torque, 
Reaction wheel angle, Incremental tachometer counts 

• Reverse Constraints: Commanded torque 

The objective of these two was simply to send torque 
commands to the RWA for a specified number of time 
intervals and then read the final tachometer count.   

The final tachometer count, processed as the cumulative 
count of incremental tach counts from each command over 
all time intervals in the test, was then compared to the 
expected values taken from these test procedures.  In this 
case, the actual results were close to the expected results, but 
did not match accurately as shown in Table 1. 

Our analysis indicated that the differences in the actual vs. 
expected tach counts are mainly due to a mismatch between 
the torque parameter used in the model and the actual friction 
torque in the hardware.  These results are being used to 
improve the accuracy of our models.  

iii) SRU MONSID model validation test:  

The SRU MONSID model shown in Figure 10 was developed 
to take the true spacecraft attitude quaternion as primary 
input, perturb it with some random noise and then output the 
perturbed quaternion data at 8Hz. It should be noted that the 
initial SRU model for this effort is intended to only perturb a 
truth quaternion with cross boresight and along boresight 
noise; none of the features like Star catalog file, Velocity 
aberration etc. will be included in the model.  However, 
future versions of the model may include the additional 
features. The noise processes have been included in the 
model to accurately reflect the types of noise that can arise 
within the SRU.  Values for each noise source were provided 
in documentation from the SRU supplier.  Those sources are 
represented as independent random processes having a 
normal distribution with a mean value of zero. 

To test the SRU MONSID model, we chose a SRU functional 
test procedure, developed at JPL, that had been run on flight 
SRU and for which the expected and actual results had been 
documented.  Our adaptation of the test procedure monitored 
the following set of SRU forward and reverse constraints, 

Figure 7 - MONSID Model Phasing Test Results – 
Forward values match simulated IRU accumulated 

angle 

Figure 8 - MONSID Model Phasing Test Results – 
Plots show model converging on true signal < +/- 50 

urad/s 
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which were processed by the SRU MONSID forward and 
reverse simulation scripts: 

• Forward Constraints: Measured Earth-Centered Inertial 
(ECI)-SRU attitude quaternion in SRU axes, measured 
ECI-SRU attitude rate in SRU axes 

• Reverse Constraints: True inertial to spacecraft attitude 
quaternion 

 

The objective of this test was to determine if the SRU is able 
to supply correct SRU to spacecraft body frame quaternion 
output if the initial rate and attitude of the spacecraft and the 
mounting orientation of the SRU on the spacecraft are 
known. For a specific truth data, the output quaternion, 
perturbed with cross boresight and along boresight noise and 
processed over length of a time interval, produces the results 
shown in Figure 11 and Table 2. 

 

We analyzed this data thoroughly as there was a mismatch 
between the signs of the MONSID SRU and SMAP generated 
quaternions. Subsequent testing on the full model (Section 4 
b) has resolved this issue as the SRU was able to sense correct 
quaternion values for that test.  We concluded that the SMAP 
documentation for this test had a typographical error.   

 

 

Table 2 - SRU MONSID functional test results 

Figure 9 - RWA-TACH MONSID MODEL with Forward and Reverse Constraints 

Test Case Torque 
Command 

Total 
Duration 

Expected 
Wheel 
Speed 

Expected 
Tach Count 

MONSID 
Simulated 

Wheel Speed 

MONSID 
Generated Tach 

Count 
JPL provided 
flight hardware 
test: Test case 1 

0.5 V(initial spin 
to wheel spin 
down) 

25 sec 5 rpm 36 tach 
pulses 

5.8 rpm 23 tach pulses 

Supplier provid-
ed hardware ac-
ceptance test: 
high rate spin 1 

10V(high rate 
spin) 
(0.254 nm 
measured) 

622.4 sec 3900 rpm 1,139.36 
tach 
pulses/sec 

3,794 rpm  1,138.2 tach 
pulses/sec 
 
 

Supplier provid-
ed hardware ac-
ceptance test: 
high rate spin 2 

10V(high rate 
spin) 
(0.253 nm 
measured) 

955.2 sec 6000 rpm 1,738.55 
tach 
pulses/sec 

5,790 rpm  1,737.0 tach 
pulses /sec 

 
Table 1 - RWA-Tach MONSID Model validation test results for different test cases 

True Rate 
(deg/sec) 

True 
Initial 
Attitude 
Quatern-
ion 

SMAP 
Generated 
SRU To Body 
Frame 
Quaternion 

MONSID 
Generated 
SRU To Body 
Frame 
Quaternion 

(0,0,0) [0,0,0,-1] (-0.52200138,  
-0.02279096,  
0.85182856,  
0.037191) 

(-0.52199856, 
-0.022794080, 
0.85183046, 
-0.037185743) 
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b. System Level V&V of Model Correctness:  

The MONSID system model level is the network of 
interconnected components that together describe a complete 
system or mode of operation, such as a reaction wheel based 
GNC. At this level, verification tests typically involve control 
system software. Although MONSID models at this time do 
not include models of the flight software, the commands 
generated by the flight software are inputs to MONSID.   

The GNC MONSID model has been developed as the main 
diagnostic model for performing Assurance of Model-Based 
Fault Diagnosis (AMBFD) and is based on the SMAP GNC 
requirements, design documentation, specifications supplied 
by vendors of GNC components and V&V artifacts.  The 
GNC model encompasses SMAP operational modes 
involving reaction wheels and fine attitude sensors. The 
SMAP spacecraft had a large spinning payload attached to 
the de-spun bus via a boom. In order to have a more typical 
example of a LEO spacecraft, the payload was not included 
in the GNC model. This simplified GNC model has a 
processing cycle of 125ms, incorporates the previously 
defined sensor and actuator components models (the IRU and 
SRU are the sensors and the RWA is the RWA), and also 
includes a Dynamics Kinematics Pseudocomponent (DKP). 
The purpose of the DKP is to provide linkage between the 
outputs of the actuator and the inputs of the sensor.  This 

component implements a simple, linearized physics model of 
the spacecraft dynamic environment during mission 
operations. It is used to generate signals such as true 
spacecraft rates and accelerations that become inputs into 
models of sensor hardware. In MONSID models, these 
components are in between actuator components like reaction 
wheels and sensor components such as the SRU and IRU.   
The MONSID model of the simplified SMAP GNC, 
implemented in Simulink, can be seen in Figure 12.  The blue 
boxes represent the 10 hardware component models. The 
DKP component is shown in yellow, to distinguish it from a 
true hardware component.  The smaller green boxes represent 
command and sensor inputs to the model. Note that the 
connection lines between components include both the 
forward and reverse paths through the model.  Figure 13 is a 
simplified representation of the GNC model where the four 
reaction wheel and tachometer components have been 
gathered into the RWA assembly; the reverse path and sensor 
inputs are not shown. 

It is important to note that none of the planning and control 
elements of a classic GNC subsystem have been included in 
the model.  We have abstracted those elements away, leaving 
only components essential to producing direct physical action 
of a spacecraft (i.e., RWA) or sensing the effects of those 
actions (the IRU and the SRU) as shown in Figure 13. 

Figure 11 - SRU MONSID Model generated ECI-SRU Frame Quaternion and ECI-SRU attitude rates in SRU axes 

Figure 10 - SRU MONSID Model 
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The initial body rates and attitude are provided as true inputs 
to initialize the GNC model. Torque commands (one 
command for each wheel of the RWA), are another set of 
inputs to the GNC model, that command the value and 
direction of the torque applied to each reaction wheel. 

The GNC model outputs include outputs from the sensor 
models. The IRU output is the spin rate of the spacecraft 
which is the true body rate input mixed with noise generated 
by the gyro component of the IRU model. The SRU outputs  
include the perturbed attitude of the spacecraft which is the 
true attitude mixed with additive noise representing the root-
sum-squared bias and random contributions.  The second 
SRU output is the spacecraft attitude rate in the SRU frame. 
Additionally, the RWA model produces a reaction wheel 
torque and wheel angular rate in response to a torque 
command directed to that wheel by the user.  The tachometer 
component generates incremental tachometer angles, which 

are outputs of the model.  The DKP relates the reaction wheel 
torques to the spacecraft torque, and thereby the change in 
angular momentum, which in turn relates to the spacecraft 
spin rate along each axis, thereby coupling an actuator output 
(RWA torque) to a sensor input (IRU measurement of spin 

rate).  We plan to perform additional V&V on the DKP 
component model as part of our future work. 

We used the MONSID engine’s simulation capability to run 
the GNC model with varioius test inputs and to monitor all 
the forward and reverse constraints of the GNC model, 
including the internally propagated constraints between the 
components.  We performed end to end validation testing on 
the GNC MONSID model by sending torque commands of 
specified durations as inputs and then monitoring the 
corresponding IRU and SRU output values, during and after 
the application of torque impulses. We then compared these 

DKP 
Tach4 

Tach3 

IRU 

SRU 

  

RWA4 

RWA3 

RWA2 

RWA1 

  

Tach2 

Tach1 

  

Fault Detection1 

Figure 12 –MONSID GNC System Model 
 

Figure 13 – Simplified MONSID GNC System Model 
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output values along with the true inputs to the outputs of a 
JPL developed sensor based model verification test used on 
the SMAP program to validate GNC models in the GNC 
design and performance verification simulation. 

We performed the end to end validation test by sending a ten 
second long 0.2 Nm torque command to one of the Reaction 
Wheels, while providing torque commands of 0 Nm to the 
remaining three wheels.  We then monitored the MIMU and 
SRU measured values after sending the torque command. The 
initial body rate and attitude were defined to be 0 deg/sec and 
[0 0 0 1] respectively. 

This end-to-end test verified that the model is consistent 
throughout. The values of the spacecraft body rates coming 
out of any component node were similar.  The 'true' 
spacecraft rates coming out of the forward node of the DKP 
due to the applied torques were sensed accurately by the 
MIMU and SRU sensors under no noise conditions. These 
values also matched the expected body rates that were 
specified in the JPL provided verification test, as shown in 
Table 3.  Additional tests to stimulate the remaining RWA 
components will also be run as part of the end-to-end testing. 

Time 
Point 
(t) 

Expected 
Body 
Rates 

(A)   "True" 
spacecraft 
body rates 
provided by 
DKP (forward 
values) 

(B)   MIMU 
measured 
body rates 
(forward 
values) 

C)   SRU 
measured 
body 
rates 
(forward 
values) 

10 
sec 

[0, 
-0.00028, 
-0.00198] 
rad/sec 

[-5.71E-06, 
-0.000277536, 
-0.001982401] 
rad/sec 

[0, 
-0.00028, 
-0.00198] 
rad/sec 

[0, 
-0.0003, 
-0.0020] 
rad/sec 

Table 3 - GNC End to End Validation Results 

5. RESULTS 
Our results to date demonstrate the feasibility of adapting test 
procedures and results used to evaluate the functionality and 
behavior of flight mission components/systems for use in 
determining the correctness of diagnostic models developed 
from the specifications and design of the flight units.  If 
diagnostic models are developed during the overall system 
development effort, our experience indicates that the effort 
involved in developing those models should not be much 
greater than effort required to develop models for other 
purposes (e.g., models developed by GNC designers to 
validate control algorithms). 

In testing the models, we found that test procedures and 
expected results about a component’s nominal functionality 
and behavior are more readily available than information 
about off-nominal behavior.  For hardware components, 
some of this is because testing a component under off-
nominal conditions could result in physical damage, and 
mission development efforts are not willing to take this risk 
with flight hardware or engineering models of that hardware.  
In this case, it may be necessary to develop additional 
verification procedures directly from a component’s 

specification or design documentation.  Techniques such as 
the version of combinatorial testing developed by Kuhn et al. 
[19] can be applied provided that 1) the requirements or 
design documentation describe off-nominal functionality and 
behavior in addition to nominal operations, and 2) the 
functionality and behavior described by those documents can 
be parameterized and those parameters grouped into 
equivalence classes. 

Once the test procedures and expected results for off-nominal 
behavior have been developed, an infrastructure similar to 
that used for testing flight software design and performance 
would be used to verify the diagnostic models.  Simulators 
allowing the injection of faults (e.g., SMAP’s Control 
Analysis Simulation Testbed (CAST)) would be part of this 
infrastructure, and would used to examine the behavior of the 
diagnostic models under the off-nominal conditions specified 
in the test procedures.  These would come into play in 
developing fault cases for verifying MONSID’s fault 
detection and identification functionality.  In these 
conditions, a correct nominal MONSID model would 
necessarily deviate from the simulation.  This would allow 
verification of the models’ correctness even under conditions 
in which it might not be possible to inject faults in the actual 
hardware components themselves. 

6. FUTURE WORK 
For the remainder of our work, we will identify techniques to 
assure the correctness and completeness of the diagnostic 
engine in isolation, and then do the same for the integrated 
diagnostic system and model.  We will also identify 
appropriate techniques for assessing the performance of the 
diagnostic engine and the integrated diagnostic engine/model 
system.  A short outline of our plans over the next two years 
is given below. 

During the coming year, we will work in the following areas: 

• Perform static analysis on the MONSID diagnosis 
engine and report on test results and coverage analysis. 

• Identify applicable formal verification techniques for 
V&V-ing models and diagnosis engines. 

These first two items fall into the category of demonstrating 
diagnosis engine correctness and completeness.  For a 
diagnosis engine to be “correct” (i.e. for each input, it 
produces the expected output) the algorithm used by the 
diagnosis engine must be correct and its software 
implementation also must be correct. Similarly, for a 
diagnosis engine to be “complete” (i.e. it handles all possible 
inputs), the algorithm used by the diagnosis engine must be 
complete and its software implementation also must be 
complete. Checking flight software for correctness and 
completeness is a well-studied problem with many available 
techniques that can be readily leveraged and applied. 
Techniques range from architecture, design, and code 
reviews to various testing and static analysis methods and 
formal verification methods.  We will survey existing 
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methods to identify approaches best suited for checking the 
correctness and completeness of MBFD engine, and mature 
them accordingly. To scope our effort, we will implement 
these techniques on a particular MBFD example technology, 
specifically MONSID.  Note that V&V-ing the diagnosis 
engine is decoupled, thus independent from V&V-ing 
models. While the proposed approach will be demonstrated 
on MONSID, we expect the technique to be generally 
applicable to other types of MBFD diagnosis engines. 

• Analyze and report on MONSID + Model memory foot 
print and runtime performance.  It is important to 
determine these values to determine how MONSID may 
be used most effectively on flight systems for which 
computing resources are usually more constrained than 
those that are ground-based.  In general, the required 
memory foot print and processing time is a function of 
the size and complexity of a model and the diagnosis 
engine characteristics.  However, because the engine is 
fixed across applications, variances in computer resource 
usage will be due to differences in model complexity. 

• Develop and demonstrate model completeness checking 
techniques.  Quantitative knowledge of the extent to 
which a diagnostic model is complete with respect to the 
system specifications will increase the confidence of the 
system health estimates provided by MBFD.  We will 
consider a system model’s completeness to be defined by 
how much of a system has been modeled.  Checking the 
completeness against the functional design is rather 
straightforward. We can compute the system topology 
based on the functional design and compare that against 
the topology of the system model. With topology defined 
as the list of components, their interfaces and their 
connotations, we are able to generate a topology from a 
model and also generate a topology from the functional 
design document.  These two topologies can then be 
automatically checked for differences.  While the 
proposed approach will be demonstrated on MONSID 
models, we expect the technique to be applicable to other 
types of MBFD models. 

• Develop and demonstrate diagnosis resolution analysis 
techniques.  The other important performance metrics for 
fault diagnosis are the diagnostic resolution (e.g. ability 
to diagnose a fault to one component vs. to a group of 
components), and the rate of false-positive and false-
negative diagnoses. The diagnostic resolution is a 
function of a system’s component and sensor topology. 
While analyzing the performance metrics such as 
memory foot print and processing time is 
straightforward, analyzing diagnostic resolution is not 
trivial because it is highly dependent on the design and 
implementation of the system to be diagnosed. We will 
investigate and develop the techniques for analyzing 
diagnostic resolution of MBFD will demonstrate the 
techniques using MONSID. 

During the year after the goals above have been achieved, we 
will focus on the following areas: 

• Perform false-positive and false-negative diagnosis rate 
analysis.  The rate of false-positive and false-negative 
diagnoses is a function of system complexity and the 
level of model fidelity.  As with diagnostic resolution,  
analyzing the rate of false-positive and false-negative 
diagnoses is not trivial because it is also highly 
dependent on the design and implementation of the 
system to be diagnosed. We will investigate and develop 
the techniques for analyzing this aspect of MBFD 
performance and demonstrate the techniques using 
MONSID. 

• Develop and demonstrate formal verification techniques 
for model correctness checking.  We will generate model 
checking techniques such as SPIN ([18], [20]) and the 
Symbolic Analysis Laboratory (SAL) tool suite [21].  
We will investigate techniques for verifying the 
diagnostic engine in isolation and in combination with a 
diagnostic model.    A key element in applying these 
techniques is developing correctness properties that must 
be satisfied: one set for MONSID alone, and a second set 
for the MONSID+diagnostic model combination.  Based 
on the way in which constraint suspension operates, we 
think it likely that these properties will involve: 

o Guarantees that constraints are suspended in the 
specified order until an inconsistency is found. 

o If no inconsistency is found, a guarantee that all 
constraints have in fact been suspended. 

o Guarantees that constraints are only suspended 
a single time, and that there are no lack-of-
progress cycles in the suspension of constraints 
(i.e., constraint A is suspended, then constraint 
B,…, then constraint A). 

Although not directly related to the V&V of MBFD, 
additional future work for this program could include 
refinements to MONSID to handle situations in which a 
faulty component could not be unambiguously identified.  
For example, the removal of one of a component’s 
constraints, while removing inconsistencies, could result in 
insufficient data to check other constraints in neighboring 
components.  Ambiguity groups, discussed in [22], could be 
used to address this issue as part of future work. 
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