
 978-1-5386-2014-4/18/$31.00 ©2018 IEEE
 1

Assurance of Model-Based Fault Diagnosis
Allen Nikora, Priyanka Srivastava, Lorraine Fesq, Seung Chung

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

{818} 393-1104, 354-7567, 354-7014, 393-7224
{Allen.P.Nikora, Priyanka.Srivastava, Lorraine.M.Fesq,

Seung.H.Chung}@jpl.nasa.gov

Ksenia Kolcio
Okean Solutions, Inc.

1463 East Republican Street, 32A
Seattle, WA 98112

310-704-6174
ksenia@okeansolutions.com

Abstract— Autonomy is an increasingly important technology
for robotic scientific and commercial spacecraft. An important
motivation for developing onboard autonomy is to enable quick
response to dynamic environment and situations, including fault
conditions that a spacecraft may encounter. The reliability of
such autonomous capabilities depends on the quality of their
knowledge of a spacecraft’s health state. Model-based
approaches to fault management, i.e. model-based fault
diagnosis (MBFD), is one approach to continuously verify
correct behavior in addition to diagnosing symptoms to estimate
the spacecraft’s health state.

The proper functioning of MBFD is dependent on 1) the quality
of the model that is analyzed and compared to the outputs of on-
board sensors to estimate the system’s health state, and 2) the
correct functioning of the diagnosis engine that interrogates the
model and compares its analysis to observed system behavior.
We are currently developing Verification and Validation (V&V)
approaches to provide the necessary confidence that MBFD
systems are correctly estimating the health of on-board
spacecraft components and systems. Our work is intended to
narrow the gap between the rapidly maturing field of Model-
Based System Engineering (including MBFD) and the less-well
understood area of identifying and applying appropriate V&V
techniques to MBFD.

Our effort is investigating three areas: 1) developing V&V
techniques for the diagnostic model, 2) developing V&V
techniques for the diagnostic engine in isolation, and 3)
developing V&V techniques for the diagnostic engine and model
in combination. This paper describes the work we have
completed in the first area. We describe our approach to
selecting a system to be represented by a model, the approach to
modeling the system, the verification approach we developed for
the model, and the results of the verification activity. We
conclude with a description of the work remaining in the last
two areas, which will be addressed over the next two years.

TABLE OF CONTENTS
1. INTRODUCTION ... 1	
2. BACKGROUND ... 2	
3. MODEL-BASED FAULT DIAGNOSIS 2	
4. APPROACH ... 3	
5. RESULTS .. 11	
6. FUTURE WORK .. 11	
ACKNOWLEDGEMENTS .. 12	
REFERENCES ... 13	
BIOGRAPHY ... 13	

1. INTRODUCTION
Current state-of-the-art at JPL and across the aerospace
industry [1] is to use monitors and responses to detect
symptoms of off-nominal conditions after faults occur, and to
respond with pre-defined sequences (see Figure
1). However, these symptom-based approaches can be fooled
by sensor failures and environmental variation, or by
commands that may intentionally put the system into an off-
nominal state. In fact, monitors and responses are often
turned off during highly critical events due to potentially
incorrect fault identification and response. This approach
also cannot verify healthy behavior, but only detects pre-
defined failures that are being monitored. It is also prone to
design escapes if a fault has not been considered during
design time.

Model-based fault diagnosis (MBFD), on the other hand,
diagnoses based on a model of how hardware components are
expected to function and compares multiple sources of
information (e.g., sensors, commands and relationships to
other components) to establish the health state of each
component. However, these approaches have only
been demonstrated twice on flight missions (i.e., DS1 [2] and
EO-1 [3]): although the demonstrations were very promising,
this approach has not been formally verified or validated.
Another example is a model-based system very similar to the
one chosen for this work which was integrated with actual
spacecraft FSW and ported to an engineering model of a late
1990’s era flight computer. In hardware-in-the-loop (HWIL)
tests this system was able to diagnose simulated faults in real
time with significant margin in computing resources [4].
Although this was another successful demonstration of a
MBFD technique, it did not provide full verification of the
system.

The effort described in this paper is to develop Verification
and Validation (V&V) approaches for a MBFD system that
ensures it is correctly estimating the health state of on-board
hardware components. Our objectives are:

• Develop and demonstrate techniques for checking
MBFD correctness and coverage/completeness. The
result will be a systematic way to verify MBFD
correctness which will provide greater confidence than
current V&V practices do for monitor/response systems.

 2

• Develop and demonstrate MBFD performance analysis
techniques (e.g., false-positive and false-negative
diagnosis rates). The result will be a systematic way of
analyzing MBFD performance that will provide greater
confidence than what current practice provides for
monitor/response systems. The structure of the
diagnostic models and the way in which they interact
with the diagnostic engine will provide information to
improve model performance that would be difficult for
monitor/response systems to provide.

 2. BACKGROUND
Autonomy has been identified as a critical emerging area for
JPL. One motivation for desiring onboard autonomy is to
enable quick response to anomalies and dynamic
environmental conditions and science opportunities. The
reliability of such autonomous capabilities hinges on the
quality of its knowledge of a spacecraft’s state of health.
However, current monitor-response Fault Management (FM)
approaches (see Figure 1) do not diagnose the health state,
but simply respond to a pre-identified set of symptoms from
the sensor data. In situations not conforming to such well-
defined cases, current FM approaches provide no information
of system health, performance, or availability, and are thus
inadequate for the needs of autonomy. In contrast, model-
based approaches to FM, i.e. model-based fault diagnosis
(MBFD), continuously verify correct hardware behavior in
addition to diagnosing symptoms to estimate the health state.
An onboard autonomy capability can then use health state
estimates to decide how to react (see Figure 2). As such,

MBFD is fundamental and foundational to enabling system-
wide autonomy.

While MBFD has been developed through decades of
research, the techniques for adequately verifying and
validating MBFD are not well understood. Work by Pecheur
et al. in 2002 [5], [6], [7] has surveyed various approaches to
V&V MBFD, but there is still work to be done to enable a
practical means to V&V MBFD. Other approaches have
focused on simulations for verification [8] and developing
tool chains [9] to partially automate as well as contain or
bound the test domain. These approaches encompass system-
level validation while other techniques such as parametric
testing (using Monte Carlo methods for sensitivity analyses)
target model validation [10]. As explained in [11], there
exists a gap between NASA software requirements and
standards for models in the case where models are part of the
flight software. This gap makes it difficult to link verification
of MBFD to requirements and to consider model V&V as a
separate activity from system-level V&V.

Hence, this effort will identify and develop verification and
validation (V&V) techniques that are appropriate for MBFD
technologies. Without V&V of MBFD, the estimated health
state produced by MBFD may be unstable or uncertain, or
MBFD may cause unacceptable delays or excessive use of
on-board computing resources. Without proper V&V of
MBFD, the decisions made by other autonomous systems
based on the MBFD’s estimated health state will be held in
low confidence, often necessitating review by spacecraft
operators, and thus diminishing their value. Thus, V&V of
MBFD is the necessary first step in enabling other autonomy
capabilities.

3. MODEL-BASED FAULT DIAGNOSIS
Fault Diagnosis Overview

A number of promising FM diagnosis techniques have been
developed over the past several decades to provide faster
hardware fault diagnosis and more effective responses to
fault conditions than the currently-used monitor-response
paradigm. Many of these results have been reported at the
International Workshop on Principles of Diagnosis (e.g.,
[12], [13]), which was first held in 1989. FM techniques such
as case-based, rule-based, and model-based approaches were
reviewed for relevance and appropriateness to meet
embedded real-time constraints that are required for
spacecraft, rovers and other spaceflight systems. Approaches
such as case-based and rule-based techniques are based on a
priori knowledge and characterization of past faults, or
enumeration of symptoms of known failure modes, and
therefore are limited by the designers’ ability to capture the
symptom/fault information. The task of checking the
completeness/coverage of case-based and rule-based
techniques is challenging in part due to the many-to-one
relationship between a symptom and its possible causes,
which is exacerbated by the number of hardware
configurations.

Figure 2 - Model-Based Fault Diagnosis Architecture

Figure 1 - Traditional monitor-response approach to
Fault Management

 3

Model-based techniques perform system monitoring, fault
detection and identification by reasoning from first
principles, based on an understanding, i.e. a model, of how
the system is expected to perform. These techniques do not
rely on pre-defined symptoms of failures, and thereby
overcome the one-to-many relations between a symptom and
its possible causes. Instead, models follow nominal
execution, and highlight when a system no longer performs
as expected. There are a number of model-based fault
management (MBFM) techniques, each with their strengths
and weaknesses. We have chosen an MBFD technique based
on constraint suspension [14].

MONSID Overview

The Model-based Off-Nominal State Isolation and Detection
(MONSID) system is an implementation of constraint
suspension extended to electro-mechanical systems [15], and
is currently being developed by Okean Solutions under the
Small Business Innovation Research (SBIR) program. It was
first prototyped in the MATLAB/Simulink environment [16]
and a C++ version intended for deployment. MONSID
consists of a core inference engine that diagnoses faults from
user-supplied models of the system given measurement and
command data. As shown in Figure 3, measurements and
command data are fed to the model representing the system.
Models are made up of interconnected components that
capture nominal behavior of system elements. In a model of
a spacecraft, for example, components could represent
various subsystem hardware such as sensors and actuators.
These data are then propagated through the models via
forward (input to output) and reverse (output to input)
constraints as indicated by the arrows in the figure. Values
resulting from the forward and reverse propagation are
compared at component boundaries (nodes). Faults are
detected by the inference engine when data from sensors,
commands, and derived from models are no longer consistent
at a node (typically several nodes). At that point, fault
isolation begins via constraint suspension, i.e. systematically

suspending data propagation across model components until
data at input and output nodes are once again consistent. A
fault is isolated to a component (or set of components) when
that component’s suspension results in consistent data
throughout the model. In other words, if a component
suspected of having a fault is removed from the model (its
constraints are not processed) and no node violations occur
on the remaining components then it must have been faulty.
Because node discrepancies imply deviations from nominal
behavior predicted by the models, this method can potentially
detect anomalous and degraded states in addition to failed
states.

4. APPROACH
In this effort, we investigate the three major facets of V&V
for MBFD: correctness, completeness and performance. As
shown in Figure 2, MBFD is composed of two parts, a system
model that is specific to the system to be diagnosed and a
generic diagnosis engine that is independent of the system to
be diagnosed. Due to this key characteristic of MBFD, it is
sufficient to check the correctness and completeness of the
system model independently from the correctness and the
completeness of the diagnosis engine. For performance,
however, a system model and a diagnosis engine cannot be
checked independently since the performance of a MBFD is
a function of the diagnosis engine properties, the model size,
and the model complexity. Over the course of this effort, we
are developing approaches to checking the correctness and
completeness separately for system models and diagnosis
engines and developing approaches to checking the
performance of MBFD as a whole. We are demonstrating the
newly developed techniques on MONSID [16], which, in
addition to this work, is also being used on JPL’s research
and development of autonomy capabilities.

System Model Overview

This year’s effort focused on identifying techniques to
determine the correctness of system models to be queried by
the diagnostic engine. Our goal was to demonstrate the
feasibility of determining model correctness by adapting
acceptance and integration tests procedures and results used
to evaluate flight and engineering units to the verification of
the models. Reviews of current missions and discussions
with engineers for those missions led us to focus on the Soil
Moisture Active Passive (SMAP) mission [17], an Earth
science mission designed to measure and map Earth's soil
moisture and freeze/thaw state to better understand terrestrial
water, carbon and energy cycles. Based on the discussions
with the SMAP Fault Protection engineer, we have
determined that fault protection issues related to Guidance,
Navigation, and Control (GNC) would be a good candidate
for the following reasons:

a. All missions encounter important GNC issues. In
particular, the fielded behavior of GNC hardware may
differ from that expected during design, especially when
the hardware is operating in off-nominal conditions.

Figure 3 - Model-based fault detection and isolation
checks system data consistency at component nodes and
systematically determines which component caused the
off-nominal condition.

 4

b. Unlike other areas, GNC systems and components tend
to have similar behavior from mission to mission,
although components (e.g., Inertial Reference Units
(IRUs) or Stellar Reference Units(SRUs)) might not
behave identically. However, they are often similar
enough that adapting models from one mission to
another is expected to be straightforward. By contrast,
areas such as avionics tend to have much more mission-
specific behavior.

c. Although each mission has specific GNC challenges
(e.g., a spinning antenna for SMAP), there are many
commonalities that can be modeled. For example, nearly
every mission needs to deal with situations in which
different sensors provide different information. For
example, the IRU may be indicating that the attitude is
within expected limits, while the SRU may indicate
otherwise.

We decided to develop a simplified model of the SMAP
mission GNC subsystem consisting of four types of hardware
components – an Inertial Reference Unit (IRU), the Reaction
Wheel Assembly (RWA) and associated tachometers
(TACH), and the Stellar Reference Unit (SRU). Despite its
simplicity, the model provides a useful example from a real
mission having real fault protection issues identified with it.
Figure 4 shows one of the components we constructed, in this
case the IRU. This component was implemented in the
Simulink version of MONSID.

Developing System Models

The models of the SMAP GNC components and the
simplified GNC subsystem were developed using
information from the SMAP mission library, including
Functional Design Documents (FDDs), design
documentation, and supplier specifications (all three GNC
components were acquired from outside suppliers).

The most time-consuming aspect of the model-building task
was identifying and retrieving the information required to
construct the models. We attribute this to two factors. First,
none of the team members have the same level of familiarity
with GNC systems as the mission developers. Second, the
models were developed after the mission itself was launched,

and the development teams had moved to new tasks
supporting other missions, resulting in significant effort to
search for archived information. Since the morphology and
level of detail of the models we developed are similar to those
developed for SMAP and other missions, we are confident
that future missions developing or adapting diagnostic
models will need significantly less effort than we required,
since domain experts will be developing the information
required to construct the models at the same time the models
are being developed.

We identified two issues to keep in mind when developing
diagnostic models. First, in addition to describing the
relationship between the model’s inputs and outputs
(“forward constraints”) the diagnostic models also need to
describe relationships between the outputs and the inputs
(“reverse constraints”). The diagnostic engine querying the
model performs a sequential relaxation of these constraints
when it detects model output that is inconsistent with the
observed system state until it can identify a set of causes of
the inconsistency. Our experience indicates that up until
now, system models at JPL have been developed to include
only the forward constraints – there may be some effort
required by system engineers to learn how to properly include
reverse constraints.

Second, there is always the question of the level of
abstraction at which a diagnostic model should be developed.
There is no analytic solution to this issue, but some of our
experience may be helpful. Models that are too coarse may
not be able to detect or identify certain classes of anomalous
behavior, such as slow degradation or progressive resource
exhaustion. Models implementing a high-fidelity
representation of a system component will allow more
confident and detailed diagnosis of fault conditions than more
abstract models, but can quickly become too complex to
query within the required time. Also, model uncertainties
may necessitate setting very broad fault detection thresholds
to avoid false positives at the cost of mis-detecting actual
faults. The principles for producing a good model discussed
in [18] can be helpful, particularly the short discussion on the
“smallest sufficient model.” As a practical matter, diagnostic
models may be implemented at varying levels of abstraction,
with those portions of the model about which there is the

Figure 4 - MONSID Model of IRU

 5

greatest concern about failure-related mission risk being
specified at higher levels of detail.

As part of the verification process, it will be necessary to
demonstrate that the model is able to detect and identify off-
nominal as well as normal operation, meaning that simulators
and analysis tools used to verify the model must be capable
of exhibiting off-nominal behaviors. It is extremely unlikely
that there will be sufficient resources available to examine the
model’s behavior under all possible off-nominal conditions,
so it will be necessary to identify those fault conditions which
analysis or operational and test data from earlier missions
using the same or similar components indicates pose the
greatest risks to mission success. Those fault conditions may
be found by analyzing anomaly reports from previous similar
missions, identifying the most commonly-occurring fault
conditions or those with the greatest effect, then constructing
a model that will display those behaviors given the
appropriate inputs. Fault tree or failure mode effects analyses
may be consulted in addition to anomaly reports to further
refine the set of highest risk fault conditions.

Developing A Model V&V Methodology

To ensure the correctness of our GNC Model, a robust
Verification and Validation architecture is aimed to be
established.

For our first year’s work, we have adopted the traditional
methodology to implement verification and validation of our
models, as shown in Figure 5. In our case, the GNC
components were designed and implemented based on their
requirements. Then the implemented and integrated system
and its components were verified using the corresponding
verification methods that include procedures and tests.
Similarly, we have developed a GNC system model based on

the functional requirements of the system and its component,
which will be verified using the corresponding verification
methods.

The correctness of a system model can be checked against
two different reference points: the functional requirements of
the system and the deployed system itself. During the design
phase of a mission, the model can be verified and validated
against the functional requirements and during the operations
phase of a mission, the model can be validated by checking it
against the actual telemetry gathered during flight. Our
current V&V approach allows us to check our model against
the functional requirements as the reference point.

Our plan is to execute the following steps using a cohesive
V&V approach as shown in Figure 5.

• Identify V&V Procedures: Hardware acceptance test
conditions and test data will be used to perform V&V on
the component and system models. For actuator models,
the inputs to the actual hardware will be commandable
and outputs will be measurable. For sensor models,
however, the inputs (other than SW commands) will be
used using motion and environment data such as rates,
accelerations, etc. to create test cases.

• Identify MONSID simulation capability to perform
V&V: A simulation/execution capability will be used to
generate the types of inputs and outputs specified by the
test cases. The simulation capabilities provided by
MONSID can execute the model to simulate the
functionality of the corresponding hardware, allowing us
to use the model as if it were a hardware testbed. The
model execution engine will run the forward and reverse
constraints of MONSID models and pass data between
components in accordance with the model topology.

• Identify Model constraints: The GNC component and
system model parameters will be utilized for verifying
MONSID model correctness. MONSID components are
developed to model the expected behavior, under
nominal operating conditions, of physical hardware.
Because MONSID models translate behavior from
outputs to inputs (reverse constraints), stimulants
representing what are normally outputs of the real
hardware are also needed as inputs to the MONSID
models. Model outputs (forward constraints) may
include analog and/or digital quantities depending on the
type of HW component being modeled. Again, because
of reverse constraints, model outputs may include
commands and input power.

Model Testing

The procedures to test the MONSID models and compare
their behavior to that of the SMAP flight units and
engineering models were developed from test procedures and
test results from both JPL and the component suppliers. We
were able to identify and adapt component and system-level

Figure 5 - Establishing a V&V Methodology

 6

tests developed by SMAP engineers to verify the
functionality and behavior of the individual components and
the integrated system for nominal operational scenarios.

a. Component Level V&V of Model Correctness:

The MONSID component level is the smallest encapsulation
of hardware behavior that may correspond to a line-
replaceable unit (LRU) of a spacecraft. Hardware is generally
verified in the physical system using acceptance tests at
component level. We have utilized existing hardware
acceptance tests, or equivalent, to verify MONSID model
components. In most cases, it was possible to use hardware
test data directly by feeding into the simulation engine. In a
few other cases, it was not possible to use hardware test data
directly either because of the limited functionality of a
component model or because the required data were not
available or not in a usable format. Missing or limited
functionality of any of the MONSID GNC components will
be enhanced in the future. The existing functionality of each
of the used GNC components was tested using the following
validation tests to ensure component level model correctness:

i) IRU MONSID model validation test:

The IRU MONSID model is based on the model of the
Honeywell manufactured Miniature Inertial Measurement
Unit (MIMU) that processes its 3 axis Ring Laser gyro data
at 200Hz to provide the inertial measurements of the
spacecraft. This model outputs 3-axis spacecraft angular
position as an accumulated angle over a specific duration of
time. The model includes modeling coning compensation,
noise, scale factor errors and two levels of quantization. It
does not include generation of disturbance forces and torques
from the internal dither mechanism.

To test the IRU MONSID model (Figure 4), we chose a
MIMU phasing test procedure, developed at JPL, that had
been run on flight IRU and for which the expected and actual
results had been documented. Our adaptation of the test
procedure monitored the following set of IRU forward and
reverse constraints, which were processed by the IRU
MONSID forward and reverse simulation scripts:

• Forward Constraints: Accumulated gyro angles

• Reverse Constraints: True inertial spacecraft rates, Gyro
bias

The objective of testing the IRU hardware was to determine
whether the IRU could sense known Earth rotation rates in
different orientations. This goal was retained when testing
the IRU MONSID model.

The true inertial spacecraft rates (Earth rotation rates in this
case), gyro bias and noise parameters were provided as inputs
to generate test data for nominal operation. The model output,
processed as the change in sensed angle divided by the length
of a time interval (angular rates along 3 axes), was compared
to the expected values taken from the test procedure used for
the flight unit. In this case, the actual results matched the
expected results, confirming correct nominal behavior for the
model. The comparison is shown graphically in Figure 6

The MONSID model phasing test results showed that the
forward constraint values match MIMU measured
accumulated angle as represented the Figure 7. The
simulation script also processed the comparison of the
reverse constraints with the test data inputs. Even though
random noise was the most significant error source, the
model reproduced similar characteristics. The plots shown in

Figure 6 - left) MONSID model accumulated gyro angles and S/C rates match SMAP generated
phasing test plots and right) true S/C rates

 7

Figure 8 confirmed that the IRU MONSID model spacecraft
rates (reverse constraints) converge on true spacecraft rates
after 0.5 seconds.

ii) Reaction Wheel Assembly-Tachometer MONSID
model validation test:

The RWA-Tach MONSID Model of a reaction wheel unit
consists of two fundamental pieces at its core, the reaction
wheel model and the tachometer model. The mathematical
model of the RWA-Tach MONSID model has been extracted
from the description of the Honeywell manufactured HR
series Reaction Wheel Assembly. A torque command,
encoded as a ±10V analog signal, of specific duration is
provided as one of the inputs to the RWA-Tach MONSID
model. Then, the model outputs the torque supplied to the
reaction wheel and the wheel angles using the RWA block
and also the corresponding tachometer pulse stream using the
Tach block, at 8Hz. The tachometer count increments or
decrements based on the value of the direction signal and will
wrap to zero from full count when incremented or to full
count from zero when decremented. Note that the System
Level GNC Model integrates all four reaction wheel models
to generate the net torque supplied to the spacecraft. The

current RWA MONSID model includes viscous friction
disturbance torque. Highly non-linear effects such as Dahl
friction were not included in order to reduce model
complexity. We may include these additional disturbances in
future iterations if needed to improve model fidelity.

To test the RWA-Tach MONSID model shown in Figure 9,
we chose a supplier provided hardware acceptance test and
also an existing test procedure, developed at JPL, which had
been run on a flight model of the RWA-Tachometer
assembly. For both of the tests, the expected and actual
results had been documented. Our adaptation of the test
procedure monitored the following set of RWA/Tach forward
and reverse constraints:

• Forward Constraints: Total wheel bearing torque,
Reaction wheel angle, Incremental tachometer counts

• Reverse Constraints: Commanded torque

The objective of these two was simply to send torque
commands to the RWA for a specified number of time
intervals and then read the final tachometer count.

The final tachometer count, processed as the cumulative
count of incremental tach counts from each command over
all time intervals in the test, was then compared to the
expected values taken from these test procedures. In this
case, the actual results were close to the expected results, but
did not match accurately as shown in Table 1.

Our analysis indicated that the differences in the actual vs.
expected tach counts are mainly due to a mismatch between
the torque parameter used in the model and the actual friction
torque in the hardware. These results are being used to
improve the accuracy of our models.

iii) SRU MONSID model validation test:

The SRU MONSID model shown in Figure 10 was developed
to take the true spacecraft attitude quaternion as primary
input, perturb it with some random noise and then output the
perturbed quaternion data at 8Hz. It should be noted that the
initial SRU model for this effort is intended to only perturb a
truth quaternion with cross boresight and along boresight
noise; none of the features like Star catalog file, Velocity
aberration etc. will be included in the model. However,
future versions of the model may include the additional
features. The noise processes have been included in the
model to accurately reflect the types of noise that can arise
within the SRU. Values for each noise source were provided
in documentation from the SRU supplier. Those sources are
represented as independent random processes having a
normal distribution with a mean value of zero.

To test the SRU MONSID model, we chose a SRU functional
test procedure, developed at JPL, that had been run on flight
SRU and for which the expected and actual results had been
documented. Our adaptation of the test procedure monitored
the following set of SRU forward and reverse constraints,

Figure 7 - MONSID Model Phasing Test Results –
Forward values match simulated IRU accumulated

angle

Figure 8 - MONSID Model Phasing Test Results –
Plots show model converging on true signal < +/- 50

urad/s

 8

which were processed by the SRU MONSID forward and
reverse simulation scripts:

• Forward Constraints: Measured Earth-Centered Inertial
(ECI)-SRU attitude quaternion in SRU axes, measured
ECI-SRU attitude rate in SRU axes

• Reverse Constraints: True inertial to spacecraft attitude
quaternion

The objective of this test was to determine if the SRU is able
to supply correct SRU to spacecraft body frame quaternion
output if the initial rate and attitude of the spacecraft and the
mounting orientation of the SRU on the spacecraft are
known. For a specific truth data, the output quaternion,
perturbed with cross boresight and along boresight noise and
processed over length of a time interval, produces the results
shown in Figure 11 and Table 2.

We analyzed this data thoroughly as there was a mismatch
between the signs of the MONSID SRU and SMAP generated
quaternions. Subsequent testing on the full model (Section 4
b) has resolved this issue as the SRU was able to sense correct
quaternion values for that test. We concluded that the SMAP
documentation for this test had a typographical error.

Table 2 - SRU MONSID functional test results

Figure 9 - RWA-TACH MONSID MODEL with Forward and Reverse Constraints

Test Case Torque
Command

Total
Duration

Expected
Wheel
Speed

Expected
Tach Count

MONSID
Simulated

Wheel Speed

MONSID
Generated Tach

Count
JPL provided
flight hardware
test: Test case 1

0.5 V(initial spin
to wheel spin
down)

25 sec 5 rpm 36 tach
pulses

5.8 rpm 23 tach pulses

Supplier provid-
ed hardware ac-
ceptance test:
high rate spin 1

10V(high rate
spin)
(0.254 nm
measured)

622.4 sec 3900 rpm 1,139.36
tach
pulses/sec

3,794 rpm 1,138.2 tach
pulses/sec

Supplier provid-
ed hardware ac-
ceptance test:
high rate spin 2

10V(high rate
spin)
(0.253 nm
measured)

955.2 sec 6000 rpm 1,738.55
tach
pulses/sec

5,790 rpm 1,737.0 tach
pulses /sec

Table 1 - RWA-Tach MONSID Model validation test results for different test cases

True Rate
(deg/sec)

True
Initial
Attitude
Quatern-
ion

SMAP
Generated
SRU To Body
Frame
Quaternion

MONSID
Generated
SRU To Body
Frame
Quaternion

(0,0,0) [0,0,0,-1] (-0.52200138,
-0.02279096,
0.85182856,
0.037191)

(-0.52199856,
-0.022794080,
0.85183046,
-0.037185743)

 9

b. System Level V&V of Model Correctness:

The MONSID system model level is the network of
interconnected components that together describe a complete
system or mode of operation, such as a reaction wheel based
GNC. At this level, verification tests typically involve control
system software. Although MONSID models at this time do
not include models of the flight software, the commands
generated by the flight software are inputs to MONSID.

The GNC MONSID model has been developed as the main
diagnostic model for performing Assurance of Model-Based
Fault Diagnosis (AMBFD) and is based on the SMAP GNC
requirements, design documentation, specifications supplied
by vendors of GNC components and V&V artifacts. The
GNC model encompasses SMAP operational modes
involving reaction wheels and fine attitude sensors. The
SMAP spacecraft had a large spinning payload attached to
the de-spun bus via a boom. In order to have a more typical
example of a LEO spacecraft, the payload was not included
in the GNC model. This simplified GNC model has a
processing cycle of 125ms, incorporates the previously
defined sensor and actuator components models (the IRU and
SRU are the sensors and the RWA is the RWA), and also
includes a Dynamics Kinematics Pseudocomponent (DKP).
The purpose of the DKP is to provide linkage between the
outputs of the actuator and the inputs of the sensor. This

component implements a simple, linearized physics model of
the spacecraft dynamic environment during mission
operations. It is used to generate signals such as true
spacecraft rates and accelerations that become inputs into
models of sensor hardware. In MONSID models, these
components are in between actuator components like reaction
wheels and sensor components such as the SRU and IRU.
The MONSID model of the simplified SMAP GNC,
implemented in Simulink, can be seen in Figure 12. The blue
boxes represent the 10 hardware component models. The
DKP component is shown in yellow, to distinguish it from a
true hardware component. The smaller green boxes represent
command and sensor inputs to the model. Note that the
connection lines between components include both the
forward and reverse paths through the model. Figure 13 is a
simplified representation of the GNC model where the four
reaction wheel and tachometer components have been
gathered into the RWA assembly; the reverse path and sensor
inputs are not shown.

It is important to note that none of the planning and control
elements of a classic GNC subsystem have been included in
the model. We have abstracted those elements away, leaving
only components essential to producing direct physical action
of a spacecraft (i.e., RWA) or sensing the effects of those
actions (the IRU and the SRU) as shown in Figure 13.

Figure 11 - SRU MONSID Model generated ECI-SRU Frame Quaternion and ECI-SRU attitude rates in SRU axes

Figure 10 - SRU MONSID Model

 10

The initial body rates and attitude are provided as true inputs
to initialize the GNC model. Torque commands (one
command for each wheel of the RWA), are another set of
inputs to the GNC model, that command the value and
direction of the torque applied to each reaction wheel.

The GNC model outputs include outputs from the sensor
models. The IRU output is the spin rate of the spacecraft
which is the true body rate input mixed with noise generated
by the gyro component of the IRU model. The SRU outputs
include the perturbed attitude of the spacecraft which is the
true attitude mixed with additive noise representing the root-
sum-squared bias and random contributions. The second
SRU output is the spacecraft attitude rate in the SRU frame.
Additionally, the RWA model produces a reaction wheel
torque and wheel angular rate in response to a torque
command directed to that wheel by the user. The tachometer
component generates incremental tachometer angles, which

are outputs of the model. The DKP relates the reaction wheel
torques to the spacecraft torque, and thereby the change in
angular momentum, which in turn relates to the spacecraft
spin rate along each axis, thereby coupling an actuator output
(RWA torque) to a sensor input (IRU measurement of spin

rate). We plan to perform additional V&V on the DKP
component model as part of our future work.

We used the MONSID engine’s simulation capability to run
the GNC model with varioius test inputs and to monitor all
the forward and reverse constraints of the GNC model,
including the internally propagated constraints between the
components. We performed end to end validation testing on
the GNC MONSID model by sending torque commands of
specified durations as inputs and then monitoring the
corresponding IRU and SRU output values, during and after
the application of torque impulses. We then compared these

DKP
Tach4

Tach3

IRU

SRU

RWA4

RWA3

RWA2

RWA1

Tach2

Tach1

Fault Detection1

Figure 12 –MONSID GNC System Model

Figure 13 – Simplified MONSID GNC System Model

 11

output values along with the true inputs to the outputs of a
JPL developed sensor based model verification test used on
the SMAP program to validate GNC models in the GNC
design and performance verification simulation.

We performed the end to end validation test by sending a ten
second long 0.2 Nm torque command to one of the Reaction
Wheels, while providing torque commands of 0 Nm to the
remaining three wheels. We then monitored the MIMU and
SRU measured values after sending the torque command. The
initial body rate and attitude were defined to be 0 deg/sec and
[0 0 0 1] respectively.

This end-to-end test verified that the model is consistent
throughout. The values of the spacecraft body rates coming
out of any component node were similar. The 'true'
spacecraft rates coming out of the forward node of the DKP
due to the applied torques were sensed accurately by the
MIMU and SRU sensors under no noise conditions. These
values also matched the expected body rates that were
specified in the JPL provided verification test, as shown in
Table 3. Additional tests to stimulate the remaining RWA
components will also be run as part of the end-to-end testing.

Time
Point
(t)

Expected
Body
Rates

(A) "True"
spacecraft
body rates
provided by
DKP (forward
values)

(B) MIMU
measured
body rates
(forward
values)

C) SRU
measured
body
rates
(forward
values)

10
sec

[0,
-0.00028,
-0.00198]
rad/sec

[-5.71E-06,
-0.000277536,
-0.001982401]
rad/sec

[0,
-0.00028,
-0.00198]
rad/sec

[0,
-0.0003,
-0.0020]
rad/sec

Table 3 - GNC End to End Validation Results

5. RESULTS
Our results to date demonstrate the feasibility of adapting test
procedures and results used to evaluate the functionality and
behavior of flight mission components/systems for use in
determining the correctness of diagnostic models developed
from the specifications and design of the flight units. If
diagnostic models are developed during the overall system
development effort, our experience indicates that the effort
involved in developing those models should not be much
greater than effort required to develop models for other
purposes (e.g., models developed by GNC designers to
validate control algorithms).

In testing the models, we found that test procedures and
expected results about a component’s nominal functionality
and behavior are more readily available than information
about off-nominal behavior. For hardware components,
some of this is because testing a component under off-
nominal conditions could result in physical damage, and
mission development efforts are not willing to take this risk
with flight hardware or engineering models of that hardware.
In this case, it may be necessary to develop additional
verification procedures directly from a component’s

specification or design documentation. Techniques such as
the version of combinatorial testing developed by Kuhn et al.
[19] can be applied provided that 1) the requirements or
design documentation describe off-nominal functionality and
behavior in addition to nominal operations, and 2) the
functionality and behavior described by those documents can
be parameterized and those parameters grouped into
equivalence classes.

Once the test procedures and expected results for off-nominal
behavior have been developed, an infrastructure similar to
that used for testing flight software design and performance
would be used to verify the diagnostic models. Simulators
allowing the injection of faults (e.g., SMAP’s Control
Analysis Simulation Testbed (CAST)) would be part of this
infrastructure, and would used to examine the behavior of the
diagnostic models under the off-nominal conditions specified
in the test procedures. These would come into play in
developing fault cases for verifying MONSID’s fault
detection and identification functionality. In these
conditions, a correct nominal MONSID model would
necessarily deviate from the simulation. This would allow
verification of the models’ correctness even under conditions
in which it might not be possible to inject faults in the actual
hardware components themselves.

6. FUTURE WORK
For the remainder of our work, we will identify techniques to
assure the correctness and completeness of the diagnostic
engine in isolation, and then do the same for the integrated
diagnostic system and model. We will also identify
appropriate techniques for assessing the performance of the
diagnostic engine and the integrated diagnostic engine/model
system. A short outline of our plans over the next two years
is given below.

During the coming year, we will work in the following areas:

• Perform static analysis on the MONSID diagnosis
engine and report on test results and coverage analysis.

• Identify applicable formal verification techniques for
V&V-ing models and diagnosis engines.

These first two items fall into the category of demonstrating
diagnosis engine correctness and completeness. For a
diagnosis engine to be “correct” (i.e. for each input, it
produces the expected output) the algorithm used by the
diagnosis engine must be correct and its software
implementation also must be correct. Similarly, for a
diagnosis engine to be “complete” (i.e. it handles all possible
inputs), the algorithm used by the diagnosis engine must be
complete and its software implementation also must be
complete. Checking flight software for correctness and
completeness is a well-studied problem with many available
techniques that can be readily leveraged and applied.
Techniques range from architecture, design, and code
reviews to various testing and static analysis methods and
formal verification methods. We will survey existing

 12

methods to identify approaches best suited for checking the
correctness and completeness of MBFD engine, and mature
them accordingly. To scope our effort, we will implement
these techniques on a particular MBFD example technology,
specifically MONSID. Note that V&V-ing the diagnosis
engine is decoupled, thus independent from V&V-ing
models. While the proposed approach will be demonstrated
on MONSID, we expect the technique to be generally
applicable to other types of MBFD diagnosis engines.

• Analyze and report on MONSID + Model memory foot
print and runtime performance. It is important to
determine these values to determine how MONSID may
be used most effectively on flight systems for which
computing resources are usually more constrained than
those that are ground-based. In general, the required
memory foot print and processing time is a function of
the size and complexity of a model and the diagnosis
engine characteristics. However, because the engine is
fixed across applications, variances in computer resource
usage will be due to differences in model complexity.

• Develop and demonstrate model completeness checking
techniques. Quantitative knowledge of the extent to
which a diagnostic model is complete with respect to the
system specifications will increase the confidence of the
system health estimates provided by MBFD. We will
consider a system model’s completeness to be defined by
how much of a system has been modeled. Checking the
completeness against the functional design is rather
straightforward. We can compute the system topology
based on the functional design and compare that against
the topology of the system model. With topology defined
as the list of components, their interfaces and their
connotations, we are able to generate a topology from a
model and also generate a topology from the functional
design document. These two topologies can then be
automatically checked for differences. While the
proposed approach will be demonstrated on MONSID
models, we expect the technique to be applicable to other
types of MBFD models.

• Develop and demonstrate diagnosis resolution analysis
techniques. The other important performance metrics for
fault diagnosis are the diagnostic resolution (e.g. ability
to diagnose a fault to one component vs. to a group of
components), and the rate of false-positive and false-
negative diagnoses. The diagnostic resolution is a
function of a system’s component and sensor topology.
While analyzing the performance metrics such as
memory foot print and processing time is
straightforward, analyzing diagnostic resolution is not
trivial because it is highly dependent on the design and
implementation of the system to be diagnosed. We will
investigate and develop the techniques for analyzing
diagnostic resolution of MBFD will demonstrate the
techniques using MONSID.

During the year after the goals above have been achieved, we
will focus on the following areas:

• Perform false-positive and false-negative diagnosis rate
analysis. The rate of false-positive and false-negative
diagnoses is a function of system complexity and the
level of model fidelity. As with diagnostic resolution,
analyzing the rate of false-positive and false-negative
diagnoses is not trivial because it is also highly
dependent on the design and implementation of the
system to be diagnosed. We will investigate and develop
the techniques for analyzing this aspect of MBFD
performance and demonstrate the techniques using
MONSID.

• Develop and demonstrate formal verification techniques
for model correctness checking. We will generate model
checking techniques such as SPIN ([18], [20]) and the
Symbolic Analysis Laboratory (SAL) tool suite [21].
We will investigate techniques for verifying the
diagnostic engine in isolation and in combination with a
diagnostic model. A key element in applying these
techniques is developing correctness properties that must
be satisfied: one set for MONSID alone, and a second set
for the MONSID+diagnostic model combination. Based
on the way in which constraint suspension operates, we
think it likely that these properties will involve:

o Guarantees that constraints are suspended in the
specified order until an inconsistency is found.

o If no inconsistency is found, a guarantee that all
constraints have in fact been suspended.

o Guarantees that constraints are only suspended
a single time, and that there are no lack-of-
progress cycles in the suspension of constraints
(i.e., constraint A is suspended, then constraint
B,…, then constraint A).

Although not directly related to the V&V of MBFD,
additional future work for this program could include
refinements to MONSID to handle situations in which a
faulty component could not be unambiguously identified.
For example, the removal of one of a component’s
constraints, while removing inconsistencies, could result in
insufficient data to check other constraints in neighboring
components. Ambiguity groups, discussed in [22], could be
used to address this issue as part of future work.

ACKNOWLEDGEMENTS
Part of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration and funded through the internal Research and
Technology Development program. The development of
MONSID was funded under a Small Business Innovative
Research (SBIR) Phase II contract with JPL.

 13

REFERENCES
[1] L. Fesq, K. Fretz and M. Newhouse, "Report on the 2012

NASA Spacecraft Fault Management Workshop," 2012.

[2] Bernard D.E., Dorais G.A., Fry C., Gamble E.B.,
Kanefsky B., Kurien J., Millar W., Muscettola N.,
Nayak P., Pell B., Rajan K., Rouquette N., Smith B.,
Williams B.C., “Design of the Remote Agent
Experiment for Spacecraft Autonomy,” in IEEE
Aerospace Conference Proceedings, Snowmass, CO,
Mar. 21-28, 1998.

[3] Hayden, S.C., Sweet, A., Shulman, S., “Lessons
Learned in the Livingstone 2 on Earth Observing One
Flight Experiment,” presented at the AIAA Infotech
Conference, 26 - 29 September 2005, Arlington,
Virginia, paper # AIAA-2005-7000.

[4] Kolcio K., Hanson M. L., Fesq L. M., Forrest D. J.,
“Integrating Autonomous Fault Management with
Conventional Flight Software: A Case Study”, IEEE
Aerospace Conference Proceedings, Snowmass, CO,
Mar. 1999.

[5] C. Pecheur and S. Nelson, "Survey of NASA V&V
Processes/Methods," Moffett Field, CA, 2002.

[6] C. Pecheur and S. Nelson, "V&V of Advanced Systems
at NASA," Moffett Field, CA, 2002.

[7] C. Pecheur and S. Nelson, "New V&V Tools for
Diagnostic Modeling Environment (DME)," Moffett
Field, CA, 2002.

[8] Lindsey, A.E., Pecheur, C., “Simulation-Based
Verification of Autonomous Controllers via
Livingstone PathFinder,” TACAS 2004, LNCS 2988,
pp. 357–371, 2004.

[9] Schumann, J. et al., “A Tool Chain for the V&V of
NASA Cryogenic Fuel Loading Health Management,”
Annual Conference of the Prognostics and Health
Management Society, 2014.

[10] Reed, E., Schumann, J., Mengshoel, O.J., "Verification
and Validation of System Health Management Models
using Parametric Testing," Infotech@Aerospace St.
Louis, MO, 29-31 March 2011

[11] Kodali, A., Robinson, P., "Towards Accreditation of
Diagnostic Models for Improved Performance," Annual
Conference of the Prognostics and Health Management
Society, Fort Worth, TX, Sept 29-Oct 4 2014.

[12] 28th International Workshop On Principles Of
Diagnosis (DX’17) Web site: https://www.fbk.eu/-
en/event/28th-international-workshop-principles-
diagnosis-dx17/

[13] Feldman, A., Kalech, M., Provan, G., (editors),

Proceedings of the 24th International Workshop on
Principles of Diagnosis, June 2013.

[14] Davis, Randall, "Diagnostic Reasoning Based On
Structure And Behavior," Artificial intelligence 24, no.
1-3 (1984): pp. 347-410.

[15] Fesq, L, “Marple: An Autonomous Diagnostician for
Isolating System Hardware Failures,” Ph.D.
Dissertation, UCLA, 1993.

[16] K. Kolcio and L. Fesq, "Model-based Off-nominal
State Isolation and Detection System for Autonomous
Fault Management," in 2015 IEEE Aerospace
Conference, Big Sky, MT, 2016.

[17] “Soil Moisture Active Passive”, SMAP Web site:
https://www.jpl.nasa.gov/missions/soil-moisture-
active-passive-smap/

[18] Gerard Holzmann, “The Spin Model Checker: Primer
And Reference Manual,” Addison-Wesley
Professional, 2003, pp. 101-126.

[19] Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei. NIST
SP 800-142. “Practical Combinatorial Testing." (2010).
Available at http://nvlpubs.nist.gov/nistpubs/Legacy/-
SP/nistspecialpublication800-142.pdf (Oct 2017).

[20] “Verifying Multi-threaded Software with Spin”, SPIN
Web site: http://spinroot.com/spin/whatispin.html.

[21] “Symbolic Analysis Laboratory”, SAL Web site:
http://sal.csl.sri.com.

[22] Kolcio, K., Fesq, L., & Mackey, R., “Model-Based
Approach To Rover Health Assessment For Increased
Productivity,” in 2017 IEEE Aerospace Conference,
Big Sky, MT, 2017

BIOGRAPHY
Allen Nikora is a Principal
Software Assurance Engineer in
JPL’s Quality Assurance Office, and
has been with the Jet Propulsion
Laboratory, California Institute of
Technology for nearly 40 years.
With support from NASA’s Office of
Safety and Mission Assurance, the

U. S. Air Force Operational Test and Evaluation Center,
the U. S. Naval Air Systems Command, and JPL internal
funding, he has conducted extensive research in various
aspects of software reliability engineering and defect
analysis, and has developed tools to assess software
reliability during test and operations. He has published
extensively on his work, and has been active in the IEEE
standards community, participating as a working group
member and chair for a number of software reliability-
related IEEE standards including all versions of IEEE
Std 1633 and IEEE Std 982.1-2005. He received the

 14

NASA Exceptional Achievement award for contributing to
the December, 1995 GALILEO entry into Jupiter orbit
and relay of probe data, and the NASA Inventions and
Contributions Award and Space Act Award for
developing the CASRE software reliability tool. He holds
a B.S. in Engineering and Applied Science from the
California Institute of Technology, and a Ph.D. in
Computer Science from the University of Southern
California. He belongs to the IEEE, the IEEE Computer
Society, and the IEEE Reliability Society.

Priyanka Srivastava is a System
Verification & Validation
(V&V) Engineer of the Flight
Systems Engineering,
Integration and Test section at
JPL. She has over a 2 years'
experience of working with
Model-Based Systems
Engineering (MBSE)

applications at the Jet Propulsion Laboratory, California
Institute of Technology. She is currently a V&V engineer
for Orbiting Carbon Observatory -3 mission, where she is
performing wide range of flight system testing and
requirement management responsibilities. Priyanka has
also tested and analyzed the internal memory
organization and bus structure of the Descent Motor
Control Assembly (DMCA) of the Mars 2020 flight system
and identified major integration behaviors of the motor
assembly with the rest of the flight system. She has also
worked on modelling launch systems interfaces with flight
systems using MBSE techniques, specifically for Europa
clipper, and also helped in formulating the launch system
requirements for those interfaces. Before starting full
time at JPL, she has also worked as an intern at NASA
Glenn where she performed MBSE tasks for modelling
Near Earth Network for the Space Communication and
Navigation(SCaN) group. Priyanka holds a Master’s
degree in Space Systems Engineering from University of
Michigan, Ann Arbor.

Lorraine Fesq is a Principal
Engineer in the Engineering
Development Office at the Jet
Propulsion Laboratory, California
Institute of Technology. She has over
30 years of aerospace experience that
spans industry, government and
academia, has worked all mission

phases of spacecraft development. She has received a
NASA Public Service Medal for her work on the Chandra
X-ray Observatory, and a NASA Exceptional Achievement
Medal for advancing the Fault Management discipline
within NASA. Lorraine taught in the
Aeronautics/Astronautics department at MIT while
researching model-based diagnostic techniques. She
organized both of NASA's Fault Management Workshops,
which brought together Fault Management practitioners
and experts from NASA, DoD, industry, and academia to
share insights and to expose and address systemic

challenges. Lorraine led a NASA-wide assessment and
advisory team to review the Constellation Program and
to recommend improvements to the program’s Fault
Management plans, designs, and organizational
structure. Lorraine is the Lead for NASA’s FM
Community of Practice, is the co-Lead for NASA’s
Software Architecture Review Board, and serves as a
Deputy Software Technical Discipline Lead with the
NASA Engineering & Safety Center. Lorraine received
her B.A. in Mathematics from Rutgers University and her
M.S. and Ph.D. in Computer Science from the University
of California, Los Angeles.

Dr. Seung Chung is the Assistant
Section Manager of the Planning
and Execution Systems section at the
Jet Propulsion Laboratory,
California Institute of Technology.
He has over 18 years of work
experience in systems engineering
and Artificial Intelligence, with
expertise in model-based system

design and analysis, planning and execution, and fault
management. He received his PhD in Autonomy and MS
in Aeronautics and Astronautics from the Massachusetts
Institute of Technology.

Ksenia Kolcio-Prather is the Vice
President of Okean Solutions, an
SBC located in Seattle, WA, where
she leads aerospace systems
engineering technical activities.
Ksenia has been the PI on several
SBIR Phase I, II, and III programs
with the Air Force Research

Laboratory and NASA JPL focusing on model-based fault
management solutions that strive to increase spacecraft
autonomy. Ksenia has also subcontracted with partner
companies on other NASA Phase II and III programs, and
DoD BAA contracts in the areas of spacecraft attitude
control and navigation mission analysis. Prior to co-
founding Okean Solutions, she was employed at
Microcosm, Inc. for seven years as a Senior
Systems/GN&C Engineer where she led and managed
GN&C hardware & software development, CONOPS,
and systems analysis on SBIR Phase I, II, and III
programs with NASA and DoD. Prior to Microcosm, she
worked at Northrop Grumman Space Technology (NGST)
for 8 years in the Avionics Systems Center. At Northrop
Grumman Ksenia worked on a variety of NASA and DoD
flight programs from design to Integration and Test. In
addition to spacecraft control design, analysis, and test
she was an autonomy and fault management lead
engineer responsible for fault management architecture
development and testing. She received a Ph.D. in
Electrical Engineering from University of Cincinnati. She
is a member of AIAA.

