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Objective:

Key Considerations:
Long-Leads -> Global
Circulation, Climate Modes

"Model & Forecast Globally”
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Outline

|. Background and Resources
* Global AR Detection Algorithm
* Climate Mode Modulations of ARs
 WCRP/WWRP S2S Project & Database

Il. AR Predictions
* Weather predictions of Individual ARs (e.g. 0-15 days)
* Subseasonal predictions (e.g. 2-6 weeks)
e Climate change projections (e.g. 50-100 years)

Ill. AR Global Model Evaluation & Improvement
* Global/Regional & Bulk AR Characteristics
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 Based on Integrated Vapor Transport
(IVT) fields and a number of common
AR criteria (e.g. Ralph et al. 2004).

* Developed for global studies and for
observations/reanalysis and models.

 Applied to:
Shape=Green, /:xis=BIue, LcndfcII=White...:%::. 0. ‘ ‘ O ERA_L MERRA'Z, CFSR’ NCEP/NCAR

Landfall IVT=1155kg/m/s dir. 31°
Mean IVT=518kg/m/s dir. 58°

Lenth=10096km, Width=1222km

Code and databases available at:
o https://ucla.box.com/ARcatalog

Databases include AR Date, IVT, .,
Shape, Axis, Landfall Location, etc.
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Guan and Waliser (2015)



NasK o e s roon Global AR Frequency, IVT & Landfalls
a) AR Frequency and IVT

AR Landfalls |.
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Guan, Waliser and Ralph (2017, In Prep)
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Climate Patterns and ARs
Pacific-North American (PNA) Arctic Oscillation (AO)

(a) —AO AR Freq. Anomalies
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(b) +AO AR Freq. Anomalies

+PNA AR Freq. Anomalies
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Guan and Waliser (2015)

AR Frequency, NDJFM, WY1998-2011

When PNA & AO are both in “negative” phases,
there is a doubling of the frequency of ARs.

AO T PNA  AO&PNA Guan et al. 2013; using Neiman et al., 2008 AR database

Diff. p=0.007 Diff. p=0.037 Diff. p=0.001
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El Nino Southern Oscillation (ENSO) Madden-Julian Oscillation (MJO)

(a) La Nina AR Frequency Anomalies
La Nina
anomaly
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See also Guan et al. (2012)
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WCRP-WWRP S2S Project

International Program for S2S Research

S2S Database

D0-46  T639/319L91 2fweek Onthe fly  Past 20y 2iweekly
D 0-60 MN216L85 4 daily Onthe fly 1996-2009  4/month

D 0-44 MNI26L64 : 4/daily Fix 1999-2010  4/daily

D 0-32 0.6x0.6L40 1 weekly Onthe fly 1995-2014 weekly
D 0-60 T47L17 weekly Fix 1981-2013  &/month

Extremes |

-

D 0-34 T319L60 2 2weekly Fix 1981-2010  3/month

D 0-60 N216L85 4 daily Onthe fly 1996-2009  4/month

* Initialisation
+ Predictability + Ensemble generation Liaison with SERA
» Teleconnection + Resolution (Working Group on
+ 0O-A Coupling + 0-A Coupling Societal and Economic
+ Scale interactions + Systematic errors Research Applications)
* Physical processes * Nulti-model combination ’

S2S Database

D 0-45 TI06L40 4 daily Fix 1886-2014 daily
D 0-32 T255L91 Weekly Fix 1993-2014  2/monthly

D0-32  0.75x0.56 L54 weekly Fix 1981-2010  &/month

D 0-63 I.Ix].4 L28 yl weekly Fix 1981-2010  weekly

 Downloaded U,V,Q fields from all models” multi-decade subseasonal hindcasts.
 Computed IVT and Applied AR Detection on ECMWEF, others in progress.
* Utilizing for AR forecast assessments, including model sensitivity.

Vitart, F.,, et al. (2017), The Sub-seasonal to Seasonal Prediction (S2S) Project Database, BAMS.
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DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2017, In Revision)

"1000km” AR hit threshold

How well do our global S2S models —
ECMWEF in this case - predict AR
occurrence/position?



AN Global AR Prediction Skill

1996-2013 ECMWF NDJFM % ensemble AR hits
a) 7-day lead, 1000km threshold

Including sensitivity of prediction skill on season, lead
time, distance threshold and climate mode variations.

DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2017, In Revision)
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o caemansectieemcesr - AR Landfall Predictions &
Water/Flood Management

When do | need to know, and with what confidence?

a) Lead time at which AR hit % = 50 AR hit % at 7-day lead
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DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2017, In Revision)

Ensemble / probabilistic information complements the
AR landfall prediction study of Wick et al. 2013 (*)
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DeFlorio, Waliser, Guan, Ralph.... (2017, In Prep)

AO Index
PNA Index
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How well do our global S2S models
— ECMWEF in this case —
predict high & low AR periods at subseasonal time scales?
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DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)

Dec 1, 2010 AR detection field
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Compute fraction of space & time a given
region has an AR for a 2 week period
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(for 2-week averages of AR frequency)

occurrence (#ARs/box), 15—day window, 6 x 6 deg box, 1996-2014 ERA-I
= o 1

AR occurrence (#ARs/box), 15-day window, 6 x 6 deg box, 1996-2014 ERA-I
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Fraction of space & time a given region has an AR occurrence, when
considering a 2 week period and the surrounding 6°x6° degree area.

DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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Using ECMWEF S2S Forecasts

v

o “‘ . ’ \ Observed AR Index:

0.0 0" ".. ‘_u“' Daily Values Based on
Yenann - Sliding 15 Day Window

Forecast AR Index:
0-14-Day Lead

DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)

AR occurrence, Pac NW, ERA-I1 15d window vs ECMWF (14d—-28d lead), 2010-2014, cor = 0.31
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AR occurrence, Southern CA, ERA-I 15d window vs ECMWF (14d-28d lead), 2010-2014, cor = 0.28
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How well do our global S2S models
— ECMWE in this case —
predict high & low AR periods at subseasonal time scales?
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Forecast vs Observation Time Series Correlations

0-14 Days 7-21 Days 14-28 Days 21-35 Days

e.g. 0.5 for 2 week average for week 2 & 3

DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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Experimental Forecasts?

AR occurrence, Central CA, ERA-I 15d window vs ECMWF 7d-21d lead

DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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o AR Landfall Predictions &
Water/Flood Management . =S

Experimental Forecasts?

AR occurrence, Pac NW, ERA-I 15d window vs ECMWF 7d-21d lead
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DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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“Forecasts of Opportunity”

AR occurrence anomalies (#ARs/box), 1996-2014 ERA-I, +ENSO & +PNA
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Both +PNA and +ENSO increase the subseasonal AR frequency
measure, particularly when combined.

Such periods yield a stronger signal and possibly better skill, TBD

DeFlorio, Waliser, Guan, Ralph, Barbour.... (2017, In Prep)
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Summary

* We're leveraging global AR databases, S2S Predictions, and
climate variations to explore/quantify AR prediction capabiilites.

* We're quantifying skill in the present-day ECMWEF forecast for:

* Individual AR Detection
* Subseasonal AR Frequency of Occurrence

* We'd like to leverage this research work to explore the
development and use of an experimental product.

* We have some comprehensive global weather /climate model
evaluation results (24 models, 17 metrics) to help identify model
weaknesses and guide improvements (Guan and Waliser, 2017)

* We have produced the first global analysis of projected 21°7
century climate changes in ARs (Espinoza et al. 2017, In prep)
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ERA-Interim (1979-2002)

Climate Change & ARs

AR Frequency & Transport: 21 CMIP5 Models

Historical (1979-2002)
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Espinoza, Waliser, Guan, Lavers, Ralph (2016, In Prep)
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Climate Change & ARs

AR Frequency & Transport: 21 CMIP5 Models
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% AR Frequency for Western US
Historical/ERA-Interim AR Frequency: 7-9%
RCP8.5 (2073-2096) AR Frequency: 9-13%
AR Frequency Increase: 2-4%;

Relative Increase 30-40%

IVT Increase for Western US
* Historical IVT ~250kg/m/s
* RCP8.5 IVT ~350 kg/m/s
* Relative Increase ~40%.

What does this imply about
total precipitation?

Espinoza, Waliser, Guan, Lavers, Ralph
(2016, In Prep)
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Native Grid Cell Size
Median E*

Seasonality: Peak Mon.
Seasonality: Mag.
Seasonality

IVT Dir. Hist.

IVT Mag. Hist.

Width Hist.

Length Hist.

IVT 2=D Hist.
Geometry 2—D Hist.
Frac. Zonal Circumfer.
Frac. Total Merid. IVT
Merid. IVT: Zonal Mean
Zonal IVT: Zonal Mean
Frequency: Zonal Mean
Merid. IVT

Zonal VT

Frequency

Weather/Climate Simulations of ARs

Models fidelity is resolution dependent, suggesting about 1.5 degree or better is a
necessary but not sufficient condition [i.e. mostly red (blue) to the left (right)].
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7 AR metrics relatively challenging:

Seasonality (3 metrics)
Fractional zonal circumference
Fractional total meridional IVT
Zonal IVT

Frequency

> W OOMTMOEI T X ITZOTUVO

4 AR metrics relatively good:

IVT magnitude histogram
Length histogram
Meridional IVT, and its zonal mean

CAPTION: Portrait diagram showing evaluation result for 17 metrics, with cool
(warm) colors indicating better(worse)-than-average models, gray circles (arrows)
indicating large RMSE (bias) relative to observation. Green outline marks 4 coupled
models. Top row indicates model horizontal resolution, with biggest (smallest) circle
about 280 (40) km.

Evaluation based on 20-year simulations from 24 global weather/climate models

from the GASS-YOTC Physical Processes Experiment Gua n and Wa“ser (2017)




