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A-Train Advances for Cloud Profiling

• Instrument synergy
• Cloud profiling radar

• Cloud and aerosol lidar

• High resolution visible, near-IR, IR imaging

• Thermodynamic sounding (cloud context)

• Global observations

• What is next?
• Time dimension, processes?

• Additional measurements?

• Questions: 
• How much information do current measurements provide?

• How to quantify measurement requirements for next generation systems?
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Observing System Simulation Experiments

• Traditionally: evaluation of potential impact of new observations on a 
NWP forecast (Hoffman and Atlas, 2016; BAMS)

• Fundamentally: quantify information in a future observing system

• Consider a spectrum of OSSEs:
• Do measurements provide enough information to estimate geophysical 

quantities of interest? What are the uncertainties? (retrieval OSSE)

• Which measurements are needed to characterize observe a process 
(or set of processes) (process OSSE)

• Which observations should be made to constrain climate forcing and response 
(climate OSSE)

• How does assimilation of new observations affect/improve a weather forecast? 
(forecast OSSE)
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Quantifying Information

• Think about retrievals
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… from a set of possibilities

A search for the 

most likely 

value…

Begin with prior information
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Quantifying Information

• Think about retrievals
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Add observations
Observe something else

Sometimes 

the solution 

is ill 

defined…

…and it 

is not 

clear 

which to 

choose

The goal is a unique solution

Perhaps we 

have not 

considered all 

sources of 

error…

Perhaps the true 

uncertainty is large…

How can we know?

Which observations do we 

need?

• What is the range of possible 

solutions?

• Is there a single most 

likely solution?

• Is there skewness 

(bias)?

• How much 

information is 

contributed by various 

combinations of measurements?

• What is gained/lost in instrument design choices?

Uncertainty in measurements 

and forward models →

a distribution of possible 

retrieval solutions

Goal: accurately 

characterize sources of 

uncertainty, and quantify 

range of retrieval solutions

Specific application: vertical profiles of cloud properties
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Bayesian Perspective

Goal: understand the range of retrieval solutions (uncertainty quantification) 

and the contribution of various measurements

The solution is a distribution of possible outcomes: a PDF

• Can be described using probability theory – what is the likelihood of a particular 

state, given everything we know about the system of interest?

• Quantify the information we already have (prior, p(x))

• Quantify the influence of new information 

(observations/likelihood, p(y|x))

• Quantify the range of solutions, given these pieces of information 

(analysis/retrieval/posterior, p(x|y))

Bayes theorem combines the available pieces of information 

to produce a retrieval solution
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p(x | y) µ p(y | x)p(x)



Obtaining the Bayesian Solution

Goal: estimate p(x|y) given p(y|x)

Options:

• Assume a distribution for each source of information

• Compute by brute force

• Random sample (Monte Carlo)

• Construct a Markov chain that samples p(x|y)
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Markov chain Monte Carlo:

▪ Produces a sample of p(x|y)

▪ Avoids states that provide a poor fit

to observations (low likelihood p(y|x) )

▪ Flexible probability distributions (no need for Gaussian assumption)
Posselt et al. (2008, JGR), Posselt and Mace (2014, JAMC), Posselt et al. (2015, MWR), Posselt et al. (2017, JAMC)

p(x | y) µ p(y | x)p(x)



OSSE: Retrieval of Cloud Properties

• Utilize in situ profiles from IPHEX/RADEX 5/12/14

• Prior from database of observations in shallow Cu

• Simulate measurements: radar Z (W, Ka, Ku), 
microwave Tb, PIA, vis/NIR reflectance

• Infer cloud properties (shallow liquid clouds)

• Assume two distinct cloud populations: 
nucleation and precip modes

• Assume PSD x is Gamma

• Evaluate various instrument design parameters:
• Measurement combinations y
• Instrument accuracy/sensitivity p(y|x)
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Cumulus congestus cloud 
observed May 12, 2014



Posterior Distribution p(x|y), Single Level 
W-Ka 12 May 2014, level 3 from top

Bayesian retrieval:

• Joint PDF of all cloud 
properties at every level

• Uniqueness

• Correlation

• Variance (uncertainty)

• Skewness (bias)
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Retrieved Profiles: GPM Ka + Ku

• Observations provide 
information on all 
quantities (posterior PDF 
narrower than prior)

• Uncertainty is large in all 
variables at all levels > 
800 m

• Radar signal > noise floor 
below 800 m
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Retrieved Profiles: CloudSat W + GPM Ka

• W-band radar adds 
information on the rain 
PSD

• Little to no additional 
information on the 
nucleation mode

• Note that there is little to 
no precip mode above 
1300 meters
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Retrieved Profiles: ACE W + Ka

• Assume more sensitive 
radar, consistent with 
ACE specifications
W: -35 dBZ, Ka: -10 dBZ

• Subtle increase in 
accuracy of retrievals for 
all rain PSD properties, 
and for droplet water 
content and number
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Retrieved Profiles: ACE W + Ka + Tb

• Add observations of 
radiometric brightness 
temperature at W and Ka
bands

• Little additional 
information from Tb, but 
remember this cloud is 
very thin.
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Bayesian Retrievals: Summary

• Remote sensing retrievals are perhaps best represented as a

distribution of possible solutions

• PDF provides the most likely solution, and uncertainty

• A Bayesian MCMC methodology can be used for retrieval

OSSEs: quantitative evaluation of measurement strategies

• For shallow liquid clouds, need sensitive W-band radar to obtain

robust estimates of rain PSDs

• A relatively sensitive 2nd radar wavelength (Ka) provides a small

improvement in the accuracy of droplet mode retrievals

• Future experiments:
• Cloud top information provided by vis/near IR

• Doppler velocity information

• Extend analysis to other cases (OLYMPEX/RADEX)
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