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Motivation

1) How do slow-moving landslides respond to
seasonal and multi-year changes in rainfall?

 We use INSAR to quantify velocity changes in
response to changes in precipitation

« Landslides display both sonal and annual
variations é

2) What does the basal slip surface look like and
how does it influence landslide motion?

« We use 3D velocity from NASA UAVSAR and mass
conservation to infer basal thickness and geometry

« Thickness is highly variable and basal slip surface
IS bumpy and irregular
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Seasonal Kinematics

« Seasonal velocity changes

« Driven by precipitation-induced changes in pore-water pressure
(Terzaghi, 1950; Iverson and Major, 1987)
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« Multi-year velocity changes

« Average landslide velocity has decreased in response to long-term
moisture deficit (98 landslides analyzed)
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* Purple = ESA Sentinel
1A/B
« 6 day minimum acquisition
 White = JAXAALOS?2

* 14 day minimum
acquisition

e Green = NASA UAVSAR
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Sentinel 1A/B and ALOS-1 time series
Landslides continue to show seasonal displacement
Total displacement significantly lower due to recent historic drought

Now can better resolve motion (i.e. halt in dry season, lag time)
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Results

Multi-year velocity changes

Changes in annual precipitation (i.e. pore-water pressure)
Slow down associated with 2014-2015 drought
Apparent velocity increase following above average rainfall
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variables
- landslide thickness, h
- time, t

- depth averaged landslide velocity, u

Assumptions
- constant density
- basal slip surface elevation does not change
- changes in thickness are responsible for
observed 3D deformation

Findings
« Landslide thickness is highly
irregular

« Basal slip surface is rough and
bumpy

 Implications for long-term
kinematics

Booth et al. (2013); Delbridge et al. (2016)



Concludmg Remarks

Recent SAR data prowdes opportunhlty to
guantify landslide kinematics over a period of "
< 1 week to multiple years

:
We find landslide velocity is sensitive to I
changes in seasonal and multi-year rainfall B

Landslide thickness is highly variable

The basal slip surface is irregular and
bumpy, which may have implications for
Kinematics
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