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ABSTRACT

The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of
coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off
between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a
stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization
masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including
phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal
of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents
a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom.
We develop a new algorithmic approach to the design optimization problem, which we call the ”Auxiliary
Field Optimization” (AFO) algorithm. The central idea of the algorithm is to embed the original optimization
problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem
containing additional degrees of freedom, specifically fictitious ”auxiliary” electric fields which serve as targets
to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the
algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective
function (here taken to be the intensity of the on-axis source in a ”dark hole” region in the science focal plane).
Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis
segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem
has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end
telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm
reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to
be encountered in a real segmented aperture space telescope.
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1. INTRODUCTION

The goal of directly imaging Earth-like planets in the habitable zone of other stars in our galaxy (0.7 to 1.5
AU from the host star) has motivated the design of coronagraphs for use with large segmented aperture space
telescopes. A star 10, 30, or 50 parsec away hosting a planet at 1AU, will require a telescope approximately 3.4,
10.2, or 17.0 meters in diameter respectively to image (at a wavelength of 550 nm) the planet in a focal plane
at 3 diffraction limited ”resolution elements” (or 3 λ/D) from the on-axis star. Moreover, the star is 10 billion
times brighter than the planet in reflected light.1 The goal of direct imaging of exoplanets in the habitable zone
therefore requires large aperture space telescopes, in order to collect enough photons from the planet, as well
as some method of high-contrast imaging, in order to suppress the diffracted starlight even as close as an Inner
Working Angles (IWA) of 3 λ/D. Therefore, achieving a direct imaging capability for exoplanets in the habitable
zone requires the development of high-contrast imaging coronagraphs or starshades designed to work with large,
segmented aperture, space telescopes.
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Optimal coronagraph designs must strike a balance between planet light throughput and diffracted starlight
suppression. We have excellent coronagraph designs for simple, uniform circular apertures, such as a monolithic
primary with an off-axis secondary mirror. However, we currently do not have the technological means to increase
telescope primary mirror diameters to the size driven by exoplanet imaging science goals with uniform circular
apertures, necessitating new coronagraph designs capable of 10−10 suppression of diffracted starlight from the
additional structure in segmented apertures.

The coronagraphs we will consider are composed of two stages of phase control (in two planes, implemented
with deformable mirrors or other devices), a focal plane mask, and a Lyot stop. General end to end optimization
of a coronagraph represents a non-convex problem with a nonlinear dependence on control parameters. In this
paper, we introduce a new algorithmic approach to coronagraph optimization motivated by the intuition that
we can find good coronagraph designs which best match the ”input-output” of ideal coronagraphs for a given
aperture. We will make this intuition more precise in what follows.

The results in this paper are with respect to optimization of either the two phase controls (DM’s) with the
focal plane fixed with a vortex phase only mask, and the Lyot plane fixed as a binary mask, typically either
an annulus or slightly undersized aperture mask. We briefly comment on an application of the AFO algorithm
adapted to apodization solutions tailored for use with a vortex focal plane mask - for a detailed discussion of
these apodozation solutions and sensitivity analysis we refer the reader to G.Ruane et al, ”Performance and
Sensitivity of Vortex Coronagraphs on Segmented Space Telescopes”, in these proceedings, as well as a summary
of apodization solutions for a catalog of potential segmented aperture designs2 We summarize application of the
auxiliary field algorithm for the catalog of apertures in the Segmented Coroangaph Design and Analysis (SCDA)
Program (led by Stuart Shaklan), as well as application to the LUVOIR initial aperture design.

2. THE CORONAGRAPH DESIGN OPTIMIZATION PROBLEM
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2. The vortex has been demonstrated to provide high sensitivity at small angular separations34,35 The problem
of aperture shape was pointed out for the vortex36,37 and several solutions have been proposed by mod-
ifying the coronagraph masks and architecture27,38–41 or through optimized wavefront control29 Mazoyer
(parametric analysis & WFIRST), but the throughput and complexity depend on the size of the cen-
tral obscuration and aperture discontinuities owing to spider support structures and gaps between mirror
segments.

3. Lyot coronagraphs with circularly symmetric masks tend to be less sensitivity to the shape of the pupil (see
e.g. Ruane et al. (2015)40) The focal plane mask of a Lyot coroangraph may be optimized for particular
telescope optics.32 However, for this work we use a simple 1 - jinc function

2. CORONAGRAPH OPTIMIZATION

2.1 The optical system

2.1.1 Baseline design #1: vortex coronagraph

1. Masks, Lyot stops, apodization for annular aperture

2. sensitivity to aberrations, analytical expressions.

3. finite size of the star, analytical expressions,.42

4. Throughput vs. R0

2.1.2 Baseline design #2: band-limited coronagraph

1. Masks, Lyot stops

2. sensitivity to aberrations, analytical expressions?

3. finite size of the star, analytical expressions?

4. Throughput vs. R0

2.2 Optimization metrics

The proposed optimization metrics are based on estimates of the signal-to-noise ratio (SNR) achieved in a given
exposure time for a typical planet, given by

SNR =
��t���c�p�

�2
phot + �2

det + �2
spek

, (1)

where � = �0qAtel, �0 is the telescope e�ciency, q is the quantum e�ciency, Atel is collecting area of the telescope,
�t is the e�ective exposure time, �� is the spectral bandwidth, �c is the coronagraph throughput, and �p is the
photon flux from the planet at the telescope aperture (photons per unit area per unit time per unit wavelength).
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Figure 1. Coronagraph model and control degrees of freedom to be optimized for suppression of diffracted starlight.

In Fig. 1 we show a schematic of the coronagraph model used here. The model begins at an entrance pupil
plane, where we have a deformable mirror for manipulation of the phase of the field. We then Fresnel propagate
to another plane containing a second deformable mirror. We Fresnel propagate back to a conjugate pupil plane,
after which we Fourier transform to a focal plane, where we have a mask (for this paper we use a vortex phase
only mask). We then inverse Fourier transform to the Lyot plane where we use a binary Lyot stop, after which
we Fourier transform the field to reach the final science focal plane. To fix notation, we represent the forward
propagation of the entrance pupil electric field to the final science focal plane according to

E(ξ) =
(
FΘF †ΩF

) (
P †λe

iΓ(λ0/λ)Pλe
iΦ(λ0/λ)

)
X(ξ) (1)

where the various optical elements are:

1. Entrance pupil electric field X(ξ) (parametrized by the location ξ of the source in the focal plane). In this
notation the on-axis source (i.e. the star) is X(0), and assumed to be a re-imaged version of the telescope
primary aperture in the coronagraph entrance pupil.



2. Entrance pupil phase control degrees of freedom (implemented by an optical element such as a deformable
mirror) represented as eiΦ(λ0/λ). In this notation, we mean that the phase Φ has some value at every pixel
in the entrance pupil, and eiΦ(λ0/λ) represents the complex-valued phase factor multiplying the incident
electric field X(ξ).

3. Fresnel propagation, denoted Pλ, from the entrance pupil to what we call the ”Fresnel plane” for purposes
of discussion in what follows.

4. Fresnel plane phase control degrees of freedom represented as eiΓ(λ0/λ).

5. Fresnel propagation back to a reference conjugate pupil plane, denoted P †λ.

6. Fourier transform, denoted F to a focal plane.

7. Multiplication of the incident field in the focal plane with a focal plane mask denoted Ω. For the purposes
of this paper, we will fix Ω to be a vortex phase only focal plane mask eilφ, with φ the polar angle in
cylindrical coordinates in the focal plane, and l the integer ”topological chage”.

8. Inverse Fourer transform to the Lyot (pupil) plane, with Lyot stop mask Θ.

9. A final Fourier transfrom to the science focal plane.

In the case of a uniform circular aperture, a vortex coronagraph with slightly undersized outer radius Lyot stop
provides perfect suppression of an on-axis point source. As discussed earlier however, the drive to larger telescopes
for exoplanet imaging requires segmented telescopes, resulting in diffraction from the additional structure of
segment gaps and also the secondary mirror and support struts. This diffracted light makes the vortex unusable
for segmented aperture telescopes - our problem then is to optimize either phase corrections in the entrance and
Fresnel planes, and / or apodization in the conjugate pupil plane. The design optimization problem involves
finding the phase or apodization resulting in ∼ 10−10 average contrast while allowing maximal planet light
through. We now discuss a novel algorithm developed to solve this optimization problem, and show the resulting
solutions enabling a vortex to work with large segmented aperture telescopes.

3. AUXILIARY FIELD ALGORITHM FOR CORONAGRAPH OPTIMIZATION

Coronagraph optimization is a non-convex optimization problem with a nonlinear dependence on parameters.
The non-convex nature of the problem is due to the coronagraph architecture - we have control degrees of
freedom in different planes, leading to the structure of a product of (a parametric family of) linear operators.
The nonlinear nature of the problem is due to the fact that we use phase control, and so have a complex
exponential dependence of the objective on our control degrees of freedom.

One approach to the minimization of ‖QCU(Γ,Φ)X(0)‖2 is gradient descent and related approaches (con-
jugate gradient descent, or variable metric). These methods compute the direction resulting in a steep local
decrease of the function, followed by a line search along this direction resulting in a minimum. However, the
nonlinear dependence on phase degrees of freedom results in a computationally expensive line search. Other
sub-optimal criteria might be used (for example a backtracking line search terminating based on the Armijo-
Goldstein condition3). In addition to computationally expensive line searches, gradient descent techniques can
result in local minima solutions, requiring other tricks to jump out and eventually settle on good coronagraph
designs.

Another strategy for coronagraph optimization is to look for a way to introduce convex, linear sub-problems
as a way of informing the optimization of the nonlinear degrees of freedom. Recent applications of stroke
minimization Electric Field Conjugation (EFC)4 are an example of this family of algorithm. This method
introduces a linear approximation of the nonlinear phase control on an incident field directly in the objective
function, and then solves for the optimal phase variation (a function of a regularization parameter controlling
the amplitude of variation). The approximation, for small phase variations

eiH(a+da) ≈ eiHa (1 + iHda) (2)



leads to a linearized form for the perturbation to the focal plane electric field

E ≈ E0 + Sda (3)

where S is the ”sensitivity matrix” (the local Jacobian of the focal plane field with respect to the phase control
degrees of freedom in either the entrance pupil plane or Fresnel plane). Substituting this approximation into the
objective function leads to the linear subproblem

δ̂ = min
δ

(
‖E0 + Sδ‖2 + µ‖δ‖2

)

=
(
µI + S†S

)−1
(−1)S†E0 (4)

The complication with the above is that for coronagraph optimization with segmented apertures, the dynamic
range of contrast we need to suppress requires DM variations that are well outside the validity of the linear
approximation above. We are therefore forced to recompute the sensitivity matrix S about the current DM
solutions frequently as we optimize.5

Given the computational expense for both gradient descent line searches and recomputing the Jacobian
for the focal plane field with respect to phase degrees of freedom, we look for alternative algorithms utilizing
convex linear subproblems informing the variations of nonlinear control degrees of freedom. We begin with
the question: ”What (conjugate pupil) field would result in vanishing energy in the dark hole region?” It is
interesting to consider such a set of conjugate pupil fields since the field in the Fresnel or entrance pupil can then
be immediately computed within our model by propagating ”backwards” (possible since the Fresnel propagators
are invertible; in fact unitary operators with an inverse given by their adjoint). This would suggest that adjusting
the phase control degrees of freedom can be done almost analytically given a specific target field propagated back
from the conjugate pupil. We note that such an approach is similar in spirit to the ”Active Compensation of
Aperture Discontinuities” (ACAD) approach, where the DM’s were adjusted to achieve a nearly uniform field in
a circular region in the conjugate pupil. However, our approach is not to assume a specific target conjugate pupil
field, but rather ask the coronagraph itself which field would result in vanishing energy in the dark hole region.

Of course, there are many possible conjugate pupil fields which give vanishing energy from the on-axis source
in the dark hole region. We immediately recognize the need to regularize our choice. One obvious regularization
is to penalize the conjugate pupil field from being too far away from the actual physical field incident on the
conjugate pupil. If we begin with flat DM’s (no phase wavefront control), we have a one dimensional parametric
family of conjugate pupil plane fields, depending on a parameter ”b”, striking a balance between vanishing dark
hole energy for the on-axis source and not deviating too far from the actual physical conjugate field,

Ŵ = min
W

(
‖QCW‖2 + b ‖W −A‖2

)
(5)

(with the entrance pupil aperture mask A set by the telescope design). The solution to this problem is

Ŵ =
(
bI + C†QC

)−1
bA (6)

(where C† is the conjugate transpose of the coronagraph operator C), and represent a one-parameter family
of target fields depending on the regularization parameter ’b’. We will discuss details of solving this (linear)
problem in what follows, as well as prove that the target field, in the limit limb→0, has vanishing energy in the
dark hole region We show such an example target field in Fig. 2, computed for a four ring hexagonal segmented
aperture telescope (specifically the LUVOIR mission concept architecture ’A’ telescope design), with a charge 6
vortex focal plane mask and a simple annular Lyot stop downstream of the conjugate pupil.

As this fictitious conjugate pupil field W has vanishing dark hole energy, it is an ideal target to try to ”hit” by
adjusting our phase control degrees of freedom. We do so by next solving for the phase degrees of freedom which
best approximate W ,

{Γ,Φ} = min
Γ,Φ

(∥∥∥W −
(
P †λe

i(λ0/λ)ΓPλe
i(λ0/λ)Φ

)
A
∥∥∥

2
)

(7)
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Figure 2. The imaginary (lower left) and real (lower middle) parts of the target (conjugate plane) complex electric field
for the on-axis source has limb→0 ‖QCW‖2 = 0 energy in the dark hole region where planets live!

While this is a nonlinear, non-convex optimization subproblem, the unitary (and invertible) nature of the Fresnel
propagators, and phase control in the Fresnel plane itself, allow accurate, and efficient, solutions to this subprob-
lem by alternating minimization of one DM with the other fixed, and back-propagating the target field to the
plane being optimized (details to be discussed in what follows).

Our new algorithmic approach is to simply iterate these two steps, where given our current DM phase control
solution we solve for the target field W , and with that ideal conjugate pupil field, we adjust the DM’s to best
approximate that target. In what follows we will refer to this algorithm as the ”Auxiliary Field Optimization”
(AFO) algorithm (the name referring to the embedding of the original optimization problem for the phase control
degrees of freedom into a larger dimensional problem including the fictitious target conjugate pupil plane field
W as ”auxiliary variables” to help inform the choice of phase variations).

It is possible to show that this algorithm, based on the above simple intuition, can be proven to converge
to a local minimum of our objective (as discussed in detail in Appendix D). ”Under the hood”, the algorithm
is a variant of an ”expectation-maximization” algorithm,6 and hints at the value of a probabilistic setting for
constructing coronagraph design optimization algorithms. It is beyond the scope of this paper to explore prob-
abilistic or random search ideas further, but we note simply that such algorithms (such as simulated annealing)
are among the few capable of delivering global optimal solutions to non-convex problems, although at potentially
tremendous computational expense. We simply use a probabilistic framework here to formulate a simpler, de-
terministic algorithm (capable of only ”local minimum” guarantees). We now proceed to discuss the numerical
implementation of the algorithm and then show results on various segmented aperture telescope designs.

4. NUMERICAL IMPLEMENTATION OF THE AUXILIARY FIELD ALGORITHM

4.1 Solving for the Target Field

As noted above, the first step of an iterative cycle of the AFO is to solve for an updated target conjugate pupil
field

Ŵ = min
W

(
‖QCW‖2 + b

∥∥∥Ŵ − U(Γ,Φ)A
∥∥∥

2
)

=
(
bI + C†QC

)−1
bU(Γ,Φ)A (8)



While this is a linear problem, it is non-trivial to solve. For numerical accuracy, it is common to use ∼ 1000, or
∼ 2000 pixels across the entrance pupil aperture, and further zero pad to give sufficient sampling in subsequent
focal planes in the coronagraph. As we have identified the conjugate pupil as a convenient place to solve for an

ideal field, the matrix to be inverted
(
bI + C†QC

)−1
is ∼ 106×106 even if restricted to a region in the conjugate

pupil matched to the support of the entrance pupil. A matrix of this size is prohibitive to store let alone compute
by brute force and invert.

However, we recall the ”Sherman-Woodbury” matrix identity for the inverse of this matrix,

(
bI + C†QC

)−1
=

[
I − C†Q

(
bI +QCC†Q

)−1
QC
]

(9)

The significance of this identity is two-fold: 1) we can multiply by the ”forward” and ”adjoint” coronagraph
operators using forward and inverse Fourier transforms and multiplication by the vortex focal plane (or its

complex conjugate) respectively, and 2) the ”internal” matrix
(
bI +QCC†Q

)−1
is of a size NDH ×NDH , with

NDH the number of pixels in the science focal plane dark hole region. This is a much smaller matrix, typically
104 × 104 for focal plane sampling of 4 pixels/(λ/D), and inner and outer working angles of 3 λ/D and 10 λ/D
respectively.

Our solution for the auxiliary field, using the matrix identity above is therefore

Ŵ =
[
I − C†Q

(
bI +QCC†Q

)−1
QC
] (
P †eiΓPeiΦA

)
(10)

We proceed to solve this by

1. Compute the true conjugate pupil field for entrance pupil aperture A

Y1 = P †eiΓPeiΦA (11)

(using Fresnel propagation and operating with the current DM phase solutions).

2. Send the conjugate pupil field through the coronagraph (through the vortex and Lyot stop to the science
focal plane), by computing

Y2 =
(
FΘF †ΩF

)
Y1 (12)

(with F and F † forward and inverse Fourier transforms respectively, Ω the phase only vortex focal plane
mask, and Θ the Lyot stop).

3. Keep only the forward field in the dark hole region by multiplying by the binary dark hole region mask
Y3 = QY2.

4. Solve the linear problem restricted to the dark hole region,

Y4 =
(
bI +QCC†Q

)−1
Y3 (13)

5. Operate with the adjoint coronagraph operator (a linear mapping from the science focal plane to the
conjugate pupil plane),

Y5 =
(
F †Ω∗FΘ∗F †

)
Y4 (14)

(where Ω∗ and Θ∗ are the complex conjugates of the vortex focal plane and Lyot stop masks respectively).

6. Subtract from the true conjugate pupil field the correction Y4 to solve for the new target auxiliary field

Ŵ =
(
P †eiΓPeiΦA

)
− Y5 (15)



We refer to Equation 13 above as the ”internal AFO linear problem”, and we solve this by brute force having
precomputed and stored a singular value decomposition of the matrix QCC†Q ≡ U Diag(S) U†, with the
columns of U the eigenmodes of the matrix QCC†Q. We discuss the details of the computation of this matrix
and associated eigenmdoes in Appendix A.

We now stress the physical importance of the eigenmodes of the internal AFO matrix used in explicitly solving
Eequation 13 above, and show that the auxiliary field W in the limit of very small regularization parameter b� 1
gives vanishing energy in the dark hole. To review, the eigenmodes satisfy the linear equation

QCC†Q|fj〉 = |αj |2|fj〉 (16)

where the eigenvalues are deliberately written as the modulus squared of a complex number |αj |2 = α∗jαj for
reasons which will become clear. In the above we are borrowing a notation inherited from Quantum Mechanics
to efficiently keep track of generally complex eigenmodes, where |fj〉 can abstractly be thought of as a (complex
valued) ”column vector” and 〈fj | be thought of as a ”row vector”. The notation is also convenient as it denotes
the eigenmodes as ”vectors” in a Hilbert space of functions without explicit reference to basis. While working
numerically, we will represent these modes at each ”pixel” of the plane in which these modes live, i.e. focal plane
or pupil plane. (ref). The eigenmodes form an orthogonal basis set, which means the inner products satisfy

〈fj |fk〉 =
1 for j = k
0 otherwise

(17)

We emphasize that the eigenmodes |fj〉 have support in the dark region (they vanish completely outside the dark
hole). We consider, for each focal plane dark hole eigenmode, as associated pupil plane mode

C†Q|fj〉 = αj |gj〉 (18)

We investigate the properties of these pupil plane modes. First we compute the inner product of any two of
these modes, and find they are orthogonal

α∗jαk〈gj |gk〉 = 〈C†Qfj |C†Qfk〉
= 〈fj |(C†Q)†C†Q|fk〉
= 〈fj |QCC†Q|fk〉
= |αk|2〈fj |fk〉
= |αk|2δjk (19)

This shows that 〈gj |gk〉 = δjk, and the associated pupil plane modes |gj〉 form an orthogonal basis for pupil plane
modes which directly contribute energy to the dark hole region. Finally we can show that the pupil plane modes
also generate the original focal plane eigenmodes. Operating on both sides of the defining equation for the pupil
plane modes 18 with QC we have

QC
(
C†Q|fj〉

)
= αj(QC)|gj〉
= α∗jαj |fj〉 (20)

or simply that

QC|gj〉 = α∗j |fj〉 (21)

This shows that the entire action of the vortex and Lyot stop in mapping a conjugate pupil field to the dark hole
region can be compactly written in terms of the ”input-output” response,

QC =
∑

j

α∗k |fj〉〈gj | (22)



while the adjoint linear operator mapping the dark hole region to an associated conjugate pupil plane is given
by

C†Q =
∑

k

αk |gk〉〈fk| (23)

and of course, with this ”factorization” we recover our original eigenmode representation

QCC†Q =


∑

j

α∗j |fj〉〈gj |



(∑

k

αk |gk〉〈fk|

)

=
∑

jk

α∗jαk |fj〉 〈gj |gk〉 〈fk|

=
∑

j

|αj |2 |fj〉〈fk| (24)

(where in the last line we used the orthogonality relation 〈gj |gk〉 = δjk).

When viewed in terms of this eigenmode decomposition of the linear mapping from conjugate to science focal
plane, one quickly sees that our implicit goal for the phase control is to somehow orthogonalize the on-axis source
in the entrance pupil from the set of dark hole conjugate pupil eigenmodes. The significance of the auxiliary
field is that, in the limit of vanishing regularization b � 1, it is exactly a projection of the on-axis source into
the null space of QC, giving zero energy in the dark hole, since we can show the solution is given in terms of the
eigenmodes |gj〉

|Ŵ 〉 = |U(Γ,Φ)A〉 −


∑

j

|gj〉
(
|αj |2

b+ |αj |2

)
〈gj |U(Γ,Φ)A〉


 (25)

As b→ 0, the above perfectly vanishes for all the pupil modes |gj〉 that map to the focal plane dark hole (once
passed through the coronagraph C). We remind the reader of Figure 2, showing exactly this property.

4.2 Variation of Phase

We now discuss the second step of the AFO iteration, in which we adjust the DM phase solutions to best
match the updated auxiliary field W (itself a function of the previous DM solution estimate). With the updated
auxiliary field in hand, we want to minimize the approximation error between the true conjugate pupil field and
the target by solving Equation 7. This is still a hard problem as it is a non-convex subproblem with a nonlinear
dependence on parameters. For this step, we alternate a minimization of one DM with the other fixed, which
results at least in a reduction of approximation error.

We make the choice to first optimize the entrance pupil phase Φ given the target auxiliary field while holding
the Fresnel plane DM phase Γ fixed, i.e. we want to solve

δΦ = min
δΦ

(∫
dλ

∥∥∥Wλ − P †λe
iΓ (λ0/λ)Pλe

iΦ(λ0/λ)eiδΦ(λ0/λ) A
∥∥∥

2
)

(26)

It is here that we appreciate one of the motivations for solving for the auxiliary field in the conjugate pupil plane
- we can take advantage of the unitary nature of the Fresnel propagators, giving their inverse simply as their
conjugate transpose (or adjoint), P−1 = P †,. The adjoint of the Fresnel propagator is easily shown to be the
Fresnel propagator with a reversed sign of the distance of propagation along the optical axis. This allows us to
back-propagate the target auxiliary field to either the Fresnel plane or entrance pupil plane, where we can almost
analytically find the variation in phase required to hit the back-propagated target.

To make this explicit in solving the entrance pupil phase variation in Equation 26, we form the back-
propagated entrance pupil target auxiliary field

Zλ(Γ) = e−iΦ(λ0/λ)P †λe
−iΓ (λ0/λ)PλW (27)



Because our approximation error metric is chosen with respect to the inner-product norm, unitary operators can
be absorbed and we have exactly

δΦ = min
δΦ

(∫
dλ

∥∥∥Wλ − P †λe
iΓ (λ0/λ)Pλe

iΦ(λ0/λ)eiδΦ(λ0/λ) A
∥∥∥

2
)

= min
δΦ

[∫
dλ

(
Z∗λ(Γ)− e−iδΦ(λ0/λ) A∗

)(
Zλ(Γ)− eiδΦ(λ0/λ) A

)]
(28)

A variation in δΦ leads to the condition

0 =

∫
dλ

(
λ0

λ

)(
Zλ(Γ)e−iδΦ(λ0/λ)A∗ − Z∗λ(Γ)eiδΦ(λ0/λ)A

)
(29)

We define the modulus and phase at each wavelength

Zλ(Γ)A∗ ≡ |Zλ(Γ)A∗| eiΨλ (30)

so that the phase variation minimum satisfies

0 =

∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗|

(
e+i(Ψλ−δΦ(λ0/λ)) − e−i(Ψλ−δΦ(λ0/λ))

)

= 2i

∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗|

(
e+i(Ψλ−δΦ(λ0/λ)) − e−i(Ψλ−δΦ(λ0/λ))

2i

)

= 2i

∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗| sin [Ψλ − δΦ(λ0/λ)] (31)

Notice that for single wavelengths, we set the update in δΦ to Ψλ, which makes any monochromatic form above
vanish. However, for any finite bandpass we only have the one DM or phase screen surface to minimize the above.
Assuming the validity of a small angle approximation sinx ≈ x, we solve for an approximate phase variation

0 =

∫
dλ

(
λ0

λ

)
|Zλ(Γ)A| sin [Ψλ − δΦ(λ0/λ)]

≈
∫
dλ

(
λ0

λ

)
|Zλ(Γ)A| [Ψλ − δΦ(λ0/λ)] (32)

giving the update to the phase

δΦ =

∫
dλ

(
λ0

λ

)
|Zλ(Γ)A|Ψλ

∫
dλ

(
λ0

λ

)2 |Zλ(Γ)A|
(33)

The same procedure is then applied to solve for a variation in the DM in the Fresnel plane with the new entrance
pupil phase Φ + δΦ fixed.

We comment on the use of the small angle approximation above in Equation 32. This is not the same as a
linearization of the DM action on an incident field. It assumes that the resulting approximation error (due to
the fact that our DM has an assumed optical path difference wavelength dependence) to the ideal wavelength
dependent phase variation Ψλ is small. This is clearly the case for small enough band. In practice we have
found this approximate method of updating the phase to work well for 10% bandwidths. We emphasize here
that future refinements of the AFO algorithm can include more sophisticated solutions to the phase optimization
subproblem (eqn. 26), possibly including gradient descent or other iterative approach, while taking advantage
of the fast back-propagation of the target field in equation 27.

We note that while we could compute several cycles of phase variation above, we have found that in practice
one cycle followed by another update in the target auxiliary field suffices to give convergence to phase solu-
tions capable of 10−10 contrast levels over 10% bandwidths. Finally, we refer the reader to Appendix B for a
generalization of the phase updates above when solving explicitly for coefficients in some set of DM ”influence
functions”.



5. APPLICATION TO THE SCDA AND LUVOIR APERTURES

We have applied the AFO algorithm to a variety of potential segmented telescope aperture designs considered
in the Segmented Coronagraph Design and Analysis (SCDA) study (led by Stuart Shaklan of the NASA Jet
Propulsion Laboratory). Examples of possible segmented apertures considered at shown in Figure 3. The AFO
algorithm resulted in both beam-shaping and apodization solutions using a vortex focal plane mask and simple
Lyot stop, with 10−10 on-axis source diffracted light suppression, with excellent throughput. We now show in
detail the contrast and throughout for both an off-axis, unobscured segmented aperture, as well as well as for
the LUVOIR architecture ’A’ design.

Segmented&Coronagraph&Design&and&Analysis&(SCDA)&study,&led&by&Stuart&
Shaklan&(JPL),&supported&by&the&Exoplanet&Exploration&Program&(ExEP).

Can#we#take#advantage#of#these#benefits#on#
segmented#apertures?

Figure 3. Segmented Coronagraph Design and Analysis (SCDA) study, led by Stuart Shaklan (JPL), supported by the
Exoplanet Exploration Program (ExEP).

5.1 Unobstructed Apertures

In Figures 4 and 5, we show the resulting solutions for beam shaping to an unobstructed four-ring Hex aperture. A
charge 6 vortex focal plane mask was used with a simple uniform circular Lyot stop with an outer radius 0.99 with
respect to the outer radius of the entrance pupil aperture. A DM array with actuator pitch of 400× 10−6 meters
was used in the model, with localized DM influence functions. The DM solutions were optimized over a 10%
band to suppress an on-axis point source.

5.2 AFO Algorithm Solution for the LUVOIR ’A” Aperture

In Figures 6 and 7, we show the resulting beam-shaping solutions for an ”ideal DM” for the LUVOIR architecture
’A’ aperture. The ”ideal DM” solutions are modeled as Optical Path Difference (OPD) phase masks in both
the entrance pupil and Fresnel Plane. The entrance aperture was left unmodified (i.e. the outer perimeter of
the aperture was not masked out with a smaller circular mask), and the Lyot stop (shown in the lower left of
Figure 7) was a copy of the entrance pupil aperture with a circular mask covering the secondary mirror. No
apodization was used in the optimization, with the 10−10 (normalized) contrast achieved purely with the phase
solutions in the entrance and Fresnel planes. We emphasize that these coronagraph design solutions are for an
on-axis point source. These solutions are a preliminary study of the feasibility of a vortex focal plane mask
with a central obscured aperture such as that considered for the LUVOIR ’A” architecture. Work in progress
is including robustness to the finite size of the star in the optimization, which must be taken into account for a
primary mirror of 15 meters used for the LUVOIR mission concept.

We note that the use of ”ideal DM’s” here for LUVOIR is significant in demonstrating the potential through-
put gains if the on-axis diffracted light is suppressed with pure phase beam shaping. One of the unique capabilities
of the AFO algorithm is the ability to solve for phase variations at each ”pixel”, leading to a solutions of pro-
hibitive dimension for algorithms such as stroke minimization EFC (relying on computation of the Jacobian for
each DM degree of freedom as outlined in4).
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Figure 4. Deformable Mirror solutions for an unobstructed hex aperture. Upper left and right show the resulting phase
applied on the Entrance Pupil and Fresnel Plane Deformable Mirror respectively, while the lower left and right show the
actuator heights in nanometers. Plot (far right) shows that relative throughput as a function of angular separation for an
off-axis source.
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Figure 5. Science focal plane normalized intensity contrast for the DM solutions in Figure 4, at 522.5, 550, and 577.5
nanometers spanning a 10% bandpass. Bandpass averaged contrast achieved is 2.8× 10−10.



Application$to$the$LUVOIR$‘A’$Architecture$– Charge$6$Vortex$with$(Pixel)$DM1$and$
DM2$Phase,$10%$Band$(550$nm)$Science$Focal$Plane$Dark$Holes
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Figure 6. ”Ideal DM” solutions for the LUVOIR ”A” architecture, achieving 10−10 suppression in a 10% band (550 nm
central wavelength) of diffracted light for an on-axis point source.
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Figure 7. Comparison of relative throughput for ”ideal DM” solutions for the LUVOIR ”A” architecture, for a charge 4
and 6 vortex focal plane mask. Both solutions are designed to achieve 10−10 suppression in a 10% band (550 nm central
wavelength) of diffracted light for an on-axis point source.



6. SUMMARY AND CONCLUSIONS

In summary, the goal of direct imaging of exoplanets in the habitable zone requires large (and therefore seg-
mented) aperture telescopes together with some means of high-contrast imaging. We have developed a new
”Auxiliary Field Optimization” (AFO) algorithm for coronagraph design for use with segmented apertures. Our
initial focus in the development of the AFO algorithm has been to solve for either beam-shaping phase solutions
(this paper), or apodization solutions2 (see also G. Ruane et. al., these proceedings) for a fixed focal plane mask
and Lyot stop. Motivated by the excellent performance of the vortex focal plane mask for unobscured uniform
circular aperture telescopes, we have applied the AFO algorithm to find solutions enabling the vortex corona-
graph to be used with segmented aperture telescopes. We find viable solutions for the catalog of unobscured
SCDA apertures (either beam shaping or apodization) which are insensitive to diffraction from a resolved stellar
disc of 0.1 mas (we refer again to G. Ruane et. al. for a detailed sensitivity analysis). For the centrally obscured
segmented apertures, we find sensitivity to the resolved stellar disc when solutions are optimized for suppression
of a point on-axis source alone. We are currently working to build into the optimization the ability to suppress
a resolved stellar disc with a generalization of the AFO algorithm to include optimization over the focal plane
mask, conjugate pupil complex (or gray-scale amplitude only) mask, along with phase beam shaping with two
DM’s.

The AFO algorithm used for solving for the ”ideal DM” solutions is also of interest in considering potential
technology development in order to boost coronagraph performance. Novel devices such as Liquid Crystal
Polymers are now being developed that show the ”ideal DM” solutions might be realizable in hardware. These
solutions are also valuable in providing insight into the spatial frequencies needed for pure phase beam-shaping
solutions, and shed light into the potential trade-offs of conjugate plane apodization and beam-shaping. The
former reduces throughput but is achromatic, while the latter results in higher throughput albeit over a restricted
wavelength bandpass. Which design is best suited to a given mission concept requires detailed sensitivity analysis
and end-to-end simulation including wavefront estimation and control, as closed-loop control (implemted with
DM’s) will introduce a wavelength dependence and limit the bandpass over which we can achieve reasonable
signal to noise (balancing both contrast and planet throughput).

APPENDIX A. COMPUTATION OF THE INTERNAL AUXILIARY FIELD MATRIX

Noting that there are eigenmodes such that

QCRR†C†Q|φj〉 = |βj |2|φj〉
R†C†Q|φj〉 = βj |fj〉
QCR|fj〉 = β∗j |φj〉

R†C†|Q|2CR|fj〉 = |βj |2|fj〉 (34)

we have the identity

Õ = bX(0)U†
[
R†C†Q

(
bI +QCRR†C†Q

)−1
QCR

]
UX(0)

= X(0)U†


R†C†Q


∑

j

|φj〉
(

b

b+ |βj |2

)
〈φj |


QCR


UX(0)

= bX(0)U†


∑

j

|fj〉
(
|βj |2

b+ |βj |2

)
〈fj |


UX(0)

(35)



APPENDIX B. OPTIMIZATION OF DEFORMABLE MIRROR INFLUENCE
FUNCTION ACTUATOR HEIGHTS

We now add details to the above if optimizing DM actuator heights, with the associated DM surface given by
the influence functions,

Γ = 4πλ−1
0

∑

k

hk(p) dk

Φ = 4πλ−1
0

∑

k

hk(p) ck (36)

where {ck, dk} are the actuator heights (in physical units) and hk(p) is the k-th influence function (at pixel p).
In matrix form then

Γ = Hd

Φ = Hc (37)

where we absorb the 4πλ−1
0 in the columns of H.

As before we want to solve

δc = min
δc

(∫
dλ

∥∥∥Wλ − P †λe
i(λ0/λ)ΓPλe

i(λ0/λ)Φei(λ0/λ)Hδc A
∥∥∥

2
)

= min
δΦ

(∫
dλ

∥∥∥
(
e−iΦ(λ0/λ)P †λe

−iΓ (λ0/λ)PλWλ

)
− ei(λ0/λ)Hδc A

∥∥∥
2
)

(38)

(where for notational convenience we only explicitly referred to the DM actuator variations being considered,
and Φ and Γ are determined by the current DM actuator settings as above).

As before we again define
Zλ(Γ) = e−iΦ(λ0/λ)P †λe

−iΓ (λ0/λ)PλW (39)

so that our minimization problem reduces to

δΦ = min
δΦ

[∫
dλ

(
Z∗λ(Γ)− e−i(λ0/λ)Hδc A∗

)(
Zλ(Γ)− ei(λ0/λ)Hδc A

)]
(40)

Setting the variation of the quadratic form above with respect to the actuator heights δc to zero (i.e. taking the
gradient of the above with respect to δc and setting to 0) leads to the condition

0 = HT ·
∫
dλ

(
λ0

λ

)(
Zλ(Γ)e−i(λ0/λ)HδcA∗ − Z∗λ(Γ)ei(λ0/λ)HδcA

)
(41)

(where HT is the transpose of the DM basis function response matrix). As before, we define the modulus and
phase at each wavelength

Zλ(Γ)A∗ ≡ |Zλ(Γ)A∗| eiΨλ (42)

Therefore, the optimal DM variation satisfies

0 = HT ·
∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗|

(
eiΨλe−i(λ0/λ)Hδc − e−iΨλei(λ0/λ)Hδc

)

= (2i) HT ·
∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗| sin [Ψλ − (λ0/λ)Hδc]

≈ (2i) HT ·
∫
dλ

(
λ0

λ

)
|Zλ(Γ)A∗| (Ψλ − (λ0/λ)Hδc) (43)



(where in the last line we again approximate sin(x) ≈ x). The above gives a linear relation between the DM
variations and a amplitude modulated source term from the Ψλ (note - a slightly different form can be derived
by first writing the objective to second order in the δc and including stroke minimization).

Finally note the intuitive but sub-optimal approximate solution for the monochromatic case

δc = (HTH)−1HTΨ (44)

This approximation neglects the amplitude modulation from the |ZA∗| and should be corrected to

δc =
(
HT |ZA∗|H

)−1
HT |ZA∗|Ψ (45)

APPENDIX C. CONVERGENCE IN MEASURE

For solving for phase solutions, we want to minimize

O(Γ,Φ) =

∫
d(λ, ξ) |QCR Uλ(Γ,Φ)X(ξ, λ)‖2 (46)

Augmenting with the ”auxiliary field” gives

Õ(Γ,Φ,W ) =
(
‖QCRW‖2 + b‖W − U(Γ,Φ)X(0)‖2

)
(47)

and we promote this objective to a parametric family of measures

− log pΘ(W,Γ,Φ) ∼ Θ
(
‖QCRW‖2 + b‖W − U(Γ,Φ)X(0)‖2

)
+ logZ[Θ, b] (48)

Note - optimizing an objective is independent of an overall scalar (> 0, i.e. without sign change). ”Marginalizing”
over W is equivalent to evaluating at the optimal W (as a function of any DM setting)

Ŵ = (bI +M)−1bUX(0)

=
[
I −R†C†Q

(
bI +QCRR†CQ

)−1
QCR

]
UX(0) (49)

(with M = R†C†|Q|2CR) giving

Õ = ‖QCRŴ‖2 + b‖Ŵ − U(Γ,Φ)X(0)‖2

= Ŵ †(bI +M)Ŵ − bX(0)U†Ŵ − bŴ †UX(0) + b|X(0)|2

= b|X(0)|2 − Ŵ †(bI +M)Ŵ

= bX(0)U†
[
I − b(bI +R†C†|Q|2CR)−1

]
UX(0)

= bX(0)U†
[
I −

(
I −R†C†Q

(
bI +QCRR†C†Q

)−1
QCR

)]
UX(0)

= bX(0)U†
[
R†C†Q

(
bI +QCRR†C†Q

)−1
QCR

]
UX(0)

(50)

This gives the identity for our measures

− log pΘ[Γ,Φ] ∼ Θ O[Γ,Φ, Ŵ (Γ,Φ)] + logW [Θ]− 1

2Θ
log det

∣∣bI +R†C†|Q|2CR
∣∣

≡ H(Γ,Φ) + state independent constants (51)



APPENDIX D. CONVERGENCE TO LOCAL MINIMA

The auxiliary field optimization iteration is really a form of ”expectation-maximization” As noted above, our
on-axis dark hole energy objective function is ”promoted to a probability on DM solutions along with auxiliary
variables”

P [Γ,Φ,W ] ∝ e−β ‖QCW‖
2−b‖W−U(Γ,Φ)A‖2 (52)

and as noted this form is designed so that analytic integration over W leads to − logP →b�1 β ‖QCU(Γ,Φ)‖2.
For any value of the regularization parameter ’b’, the conditional P [W |Γ,Φ] is Gaussian with a ”peak” at the
field

max
W

(− logP [W |Γ,Φ]) =
(
bI + C†QC

)−1
bU(Γ,Φ)A (53)

Jensen’s inequality leads to the well known Expectation-Maximization iterative algorithm6

log

(
P [Γ,Φ]

P [Γn,Φn]

)
≥

∫
dW P [W |Γn,Φn] log

(
P [Γ,Φ|W ]

P [Γn,Φn|W ]

)

= −
∫
dW P [W |Γn,Φn]

(
‖W − U(Γ,Φ)A‖2 − ‖W − U(Γn,Φn)A‖2

)

The above shows that maximizing the right-hand side never results in a worse objective (− logP . For the
Gaussian (conditioned on (Γn,Φn) ) maximizing the right-hand side equivalent to

{Γn+1,Φn+1} = min
Γ,Φ

(∥∥∥Ŵ (Γn,Φn)−
(
P †λe

i(λ0/λ)ΓPλe
i(λ0/λ)Φ

)
A
∥∥∥

2
)

(54)

with Ŵ (Γn,Φn) the mean field given the past DM solutions.
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