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ABSTRACT
We propose Marve, a system for extracting measurement values,
units, and related words from natural language text. Marve uses
conditional random �elds (CRF) to identify measurement values
and units, followed by a rule-based system to �nd related entities,
descriptors and modi�ers within a sentence. Sentence tokens are
represented by an undirected graphical model, and rules are based
on part-of-speech and word dependency pa�erns connecting values
and units to contextual words. Marve is unique in its focus on mea-
surement context and early experimentation demonstrates Marve’s
ability to generate high-precision extractions with strong recall.
We also discuss Marve’s role in justifying NASA JPL’s proposed
HyspIRI mission, a hyperspectral infrared imaging satellite that will
study the world’s ecosystems. In general, our work with HyspIRI
demonstrates the value of semantic measurement extractions in
characterizing quantitative discussion contained in large corpuses
of natural language text. �ese extractions accelerate broad-cross
cu�ing literature surveys and expose researchers and scientists new
algorithmic approaches and experimental nuances. �ey also facili-
tate identi�cation of scienti�c opportunities enabled by HyspIRI
leading to more informed scienti�c investment and research.
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1 INTRODUCTION
Much of the world’s scienti�c information is easily accessible from
our �ngertips. For example, a search for “remote sensing” on �om-
son Reuter’s Web of Science yields nearly 14,000 journal articles
from 2014–20161. However, the careful analysis and understand-
ing of that scienti�c information is not in and of itself, easy. An
individual scientist may spend many hours reading, and re-reading
a single article just to comprehend what it is trying to say. In the
prior example about remote sensing the aforementioned corpus of
articles returned is simply too large for a human, or even a small set
of them, to read each and every article and to synthesize the resul-
tant information into knowledge from them . Fortunately, continual
advances in search and natural language processing (NLP) have
greatly enhanced our ability to automatically characterize and si�
through large-scale unstructured data. Neural network approaches
have vastly improved essential NLP tasks such as part-of-speech
(POS) tagging and dependency parsing. For example, Stanford
CoreNLP’s dependency parser achieved 91.7% [8] accuracy on the
Penn Treebank dataset and Google’s Parsey McParseface a�ained
an impressive 94.4% on sentences from various news sources [3].

While NLP provides a foundational framework for processing
text, scienti�cally understanding that text requires more. One of
the core elements of science is measurement which involves quan-
ti�cation (in some units e.g., nanometers; microns, etc.); possibly
a min/max range, understanding of the measured value, etc. Mea-
surements abound in scienti�c literature. Consider the sentence,
”�e unexpected drop in stratospheric water vapor slowed the rate
of increase in surface temperature in the subsequent decade by 25%.”
Identifying “25%” as the “rate of increase in surface temperature”
is di�cult without a system that considers the underlying phrasal
structure of the sentence. Proper measurement extraction and la-
beling enables the creation of unique knowledge bases and opens
exciting possibilities for modeling and visualization techniques that
rely on organized and uniform numerical data. In the 14,000 journal
articles already described, automatically discerning the scienti�c
measurements; their values, and min/max range can allow for quick
summarization and scienti�c understanding of a large corpus of
literature and/or news articles. In addition, it can allow for valida-
tion and comparison of automated textual science understanding
with that of remotely sensed measurements, providing additional
context, and even scienti�c corrobation of phenomena.

We describe a framework, Marve, that fuses existing techniques
in NLP and text processing to extract context around measurements

1h�ps://apps.webo�nowledge.com
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in natural language. Using rules primarily based on word dependen-
cies and POS tags, Marve exploits a limited set of English language
language pa�erns used to discuss measurements and the objects or
concepts they quantify. Traditionally, the cost of manual curation
and the ambiguity of unaccompanied measurements have limited
the collection and application of semantic measurement data. For
instance, measurement context enables improved identi�cation of
measurement types. From a scienti�c perspective, Marve acceler-
ates exploration of literature and promote cross-pollination of ideas
and approaches across domains.

2 MOTIVATION
Marve originated from a NASA Advanced Concepts project that has
provided data-driven support for NASA JPL’s proposed Hyperspec-
tral Infrared Imager (HyspIRI) mission. HyspIRI is a hyperspectral
infrared imager that will monitor a variety of ecological and ge-
ological features at a wide range of wavelengths. �e planned
HyspIRI instrumentation has unique technical capabilities such as
high spatial resolution and hyperspectral coverage that will bene-
�t various scienti�c areas [11]. However, the extent and nature of
these bene�ts are not comprehensively understood because much of
this information is embedded within scienti�c publications spread
across numerous journals. We set out to automatically identify
and pro�le these new scienti�c opportunities using a corpus of
approximately 2,500 recent publications and abstracts from various
journals in the remote sensing domain.

Our �rst approach involved the use of regular expressions to
extract common measurement types in the remote sensing domain.
Extracted measurements like spatial resolution, spectral coverage
and revisit rate provided a useful bookmarking of our corpus –
discussions around hyperspectral wavelengths (>2400 nm) and
high spatial resolutions were pointers toward potential science
enabled by HyspIRI. Visualizing these extractions also revealed
the scale (number of mentions) of the discussion around various
wavelengths. Unfortunately, the regular expression-base approach
was insu�cient in several ways: precision and recall of extractions
was unknown, regular expressions didn’t generalize across mea-
surement types, and regular expressions are complex and sensitive.
Most importantly, measurements were extracted in isolation. An ex-
traction of “50 m” could be a measurement of height, swath, length,
or resolution in the context of remote sensing. We a�empted to
look for pre-de�ned words in proximity to indicate context but
this approach was tedious and error-laden. Ultimately, Marve re-
sulted from our pursuit of a general, accurate, and precise tool that
provided semantically-rich extractions.

3 RELATEDWORK
3.1 Measurement Extraction

3.1.1 Grobid�antities. �e Marve stack includes Grobid �an-
tities, which uses linear conditional random �elds (CRF) to identify
measurement units and values. For both types of extraction per-
formed by Grobid �antities, labeled training data (ideally from
the domain targeted for extractions) and subsequent model training
is required. �is pre-work is tolerable for measurement extraction
given the alternatives. Measurement conventions and unit formats
vary widely across scienti�c domains and the resulting proliferation

of pa�erns is too large and varied for unsupervised models or rule-
based systems to be e�ective. (could put some examples here from
dark ma�er papers). We initially tried extracting measurements
using a rule-based approach built around POS tags, named-entity
recognition (NER), word dependencies, and regular expressions.
While this approach was fast and training-free, a�empts at gen-
eralizing the system for di�erent domains led to numerous false
positive extractions. Aspects such as capitalization, abbreviations,
and spacing vary across di�erent number and unit conventions.
Aras et. al [4] provide further discussion of these challenges.

�rough this exploration process we determined quanti�ed sub-
stances and related entities (i.e. context) don’t present the same
challenges. �ey follow common language pa�erns that generalize
well. Marve identi�es words and entities that form the context
around a measurement without the need for training and labeled
examples. Marve can also capture related entities from a broad
assortment of language pa�erns. Consider the following sentence:
“Using Landsat-8 data, modelers achieved 82% classi�cation accu-
racy for cutleaf teasal.” Grobid �antities isn’t designed to identify
“Landsat-8 data” or “cutleaf teasal” as related entities. Marve is
able to capture this additional information without domain-speci�c
labels or training - these types of phrasal pa�erns and clauses
are common across the English language. Additionally, modifying
the behavior of Marve is transparent and easily adjusted via the
JSON representation of desired language pa�erns. While Grobid
�antities could be extended to capture more context, tuning Gro-
bid extractions requires adding or adjusting labels and re-training
the full model for a speci�c domain. Marve mitigates additional
overhead required for context extraction.

3.1.2 �antalyze and GATE. �antalyze2 is a commercial prod-
uct that also performs measurement, unit, and context extraction.
Evaluation of its performance can only be achieved through their
online demo, but a�er comparing extractions from several para-
graphs of text, their tool appears to achieve poor recall in both
measurements captured and quanti�ed substances captured. Ad-
ditionally, Agatonovic et. al [1] employ GATE [9] to extract mea-
surement values and units from patent documents. �eir approach
involves building patent-speci�c gazateers and hand-wri�en rules
to generate measurement annotations using GATE. While Grobid
�antities requires labeled data, its embedded CRF model obviates
rule-writing and Agatonovic et. al’s approach only captures accom-
panying words such as “less than” or “between” while ignoring
related entities and context.

3.2 Open Information Extraction (OIE)
Various OIE systems approach relation extraction in similar ways to
Marve. KrakeN [2], CSD-IE [6] and ClausIE [10] utilize dependency
pa�erns and POS tags to detect clauses and �nd their propositions.
�is information is then used to construct triples representing facts
in a corpus, such as: (“Kelly”, “�nished”, “nursing school”). Similar
to the Agatonovic et. al’s GATE-based approach, certain measure-
ments could be extracted via OIE approaches. But OIE is centered
on verb-mediated prepositions and measurement context occurs in
a variety of other forms such as adverbials: “�e satellite captured
imagery with 50 m spatial resolution.” �is leads to poor OIE recall
2h�ps://www.quantalyze.com/
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for measurements. When measurements are extracted by these
systems, the output requires signi�cant post-processing to �lter
extraneous OIE extractions and properly separate measurements,
units, and related entities. Marve is a more directed form of these
approaches, and it is most similar to those that sacri�ce e�ciency
for improved precision and recall (e.g. OLLIE [19], Kraken, and
ClausIE).

3.3 Relationship Extraction
Knowledge base construction (KBC) and relationship extraction
have migrated from pa�ern matching and rule-based systems to
machine learning based systems over the last decade. One of the
driving factors behind this trend is that KBC systems that rely on
a multitude of rules require some assurance of the precision and
recall of such rules []. In practice this is di�cult and tedious. As dis-
cussed in section 3.1, this is also the reason for the use of machine
learning approaches to measurement value and unit extraction -
too many pa�erns and rules result in uncertainties about precision
and recall. However, Marve di�ers from traditional KBC systems
in two primary ways. First, Marve doesn�t explicitly classify types
of relationships between extracted measurements and their related
words and entities. Second, Marve is directed at a very speci�c type
of extraction (measurements) that bene�ts many scienti�c infor-
mation extraction scenarioss. In this sense, it is complimentary to
broader KBC systems. One of the most prominent KBC systems
of late is DeepDive, which is designed to identify relationships be-
tween extraction types using labeling functions wri�en by domain
experts. However, generating the extractions of interest is le� up
to the user and writing discerning labeling functions is an gradual,
iterative process. To this end, Marve automates a large part of the
development of a DeepDive system by automatically extracting
measurements and providing targeted measurement context to la-
beling functions. Section 6.2 includes further discussion around
Marve and DeepDive integrations.

4 METHODOLOGY
4.1 Overview
As discussed in section 3, we decided against a custom measurement
extractor and instead used Grobid �antities to extract measure-
ments, units, and some quanti�ed substances. Like Marve, Grobid
�antities represents sentences with undirected graphs. �ough
instead of parsing language pa�erns, Grobid uses a probabilistic
graphical CRF method that learns parameters through maximum
likelihood estimation. �is approach to extracting numerical values
and units was more consistent in our experimentation although it
adds processing overhead and requires labeled training data.

Once measurements values and units are identi�ed using Grobid,
Stanford’s CoreNLP library [14] is used to perform more traditional
NLP tasks such as tokenization, POS tagging, and word dependency
parsing. Marve uses combinations of the output from these tasks
to identify measurement types (e.g. 10 m spatial resolution) and
related entities (e.g. Hannibal had around 40 elephants). �ese
pa�erns originate at the measurement unit token(s) and expand
outward to connected nodes (words) in the graph. If Marve �nds
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Figure 1: An example graph generated for the sentence:
“HyspIRI has a spatial resolution of 10 m.” Nodes are la-
beled with words and POS tags and edges are labeled with
word dependencies. In this case, the measurement unit “m”
is the origin for the patternmatchingMarve uses to identify
related words and entities.

a pa�ern de�ned as valid in the hierarchical JSON framework3, it
will be returned as an entity related to the measurement. To the
facilitate pa�ern evaluation, each sentence is loaded into a graph
using the well-established NetworkX library4 wri�en in python.

4.2 Model Structure
Consider a connected, undirected graph G = (V ,E) where V and E
denote the sets of nodes and edges respectively, such that:

• S = {s1, s2, ..., sn } is a set of sentences that comprise a
corpus of text from which measurements are extracted.

• T = {t1, t2, ..., tn } is a set of all tokens in S .
• si = {t | t ∈ T } where each sentence s ∈ S is a set of t

tokens.
• One graphG is constructed is constructed for each sentence

si .
• L = {l1, l2, ..., ln } where li is a label which identi�es the

part of speech for each ti token in a sentence si .
Given these notations, the set of nodes V in each graph can be
de�ned as V = {v1,v2, ...,vn } where vi stores a token ti ∈ t for a
set of t tokens in a sentence s , and each token ti is labeled with label
lj ∈ L. �en we de�ne ei j as an edge connecting (vi ,vj )with a label
di j representing the dependency between tokens (ti , tj ), where D
is the set of all dependencies equal to the length of E.

4.3 Pattern Matching
Once a measurement is identi�ed by Grobid �antities, the token
ti that corresponds to the measurement unit becomes the origin
for subsequent pa�ern evaluation (as shown by the thicker circle
in Figure 1). A graph дi is constructed for sentence si containing
the measurement. If the dependency label di j for any edge ei j orig-
inating at ti matches the valid word dependency types de�ned in

3h�ps://github.com/khundman/marve/blob/master/marve/dependency pa�erns.
json
4h�ps://networkx.github.io/

https://github.com/khundman/marve/blob/master/marve/dependency_patterns.json
https://github.com/khundman/marve/blob/master/marve/dependency_patterns.json
https://networkx.github.io/
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Table 1: Sample dependency pattern that would result in the
extraction of “spatial resolution” as related to “10 m” from
the example sentence in Figure 1. (see Table 2 for example
of full extraction.

{

``nmod '': {

``enhanced '': true ,

``of '': {

``measurement_types '': [``space_between '', ``attached ''],

``pos_in '':{

``NN '': null

}

}

}

}

the dependency pa�ern JSON evaluation continues. One subtlety
stems from CoreNLP’s enhanced dependencies, which provide the
connecting word for certain dependency types. For example, if the
conjunction “and” connects two words the enhanced dependency
type returned by CoreNLP is “conj:and” rather than “conj”. When
Marve encounters a dependency type that has been enhanced, it
evaluates the enhanced portion separately allowing for more nu-
anced pa�ern de�nitions. �is is represented in the JSON structure
with a boolean value for the “enhanced” key (shown in Table 1).

If “enhanced” is true, the dependency label di j is split into two
parts – the connecting word and dependency type. If both parts
match the JSON structure, evaluation continues along that nested
path.

Marve considers the format of the measurement a�er word de-
pendencies are evaluated. �ree primary formats are de�ned:

• space between (e.g. “10 m”)
• attached (e.g. “10m”)
• hyphenated (e.g. “10-m”)

Measurement formats are identi�ed using the character indices
of measurement value token tk and measurement unit token ti .
If ti and tk are adjacent (without a space), they are “a�ached”. If
not, a simple check for a space or hyphen is performed. Word
dependency and POS pa�erns vary based on these formats and
explicitly de�ning rules around them improve Marves precision.

POS tags are the next evaluation step in Marve. If the measure-
ment format is valid given the dependency pa�ern and token tj is
connected to the unit token ti via a valid dependency pa�ern, label
lj is evaluated in one of two ways:

• pos in: As long as one of the keys in the pos in JSON
object matches part of label lj they are valid (e.g. if one of
the keys for the pos in nested object is “NN” and label lj
is “NNS”)

• pos equals: �e speci�ed POS labels must match label lj
exactly

If a matching POS key has its own keys and values in the JSON,
this is where special cases are handled. Most of these involve verbs,
which are o�en part of a clause containing a subject related to
the measurement. In this case, all nodes connect to token tj are
evaluated by a separate function. Valid word dependencies are
passed as parameters to this function and it executes recursively

Table 2: Sample Marve output for the example sentence in
Figure 1. �e “quantity” �eld is populated by Grobid �an-
tities and the “related” �eld is added by Marve.

{

``type '': ``value '',

``quantity '': {

``parsedValue '': 10,

``normalizedQuantity '': 10,

``rawValue '': ``10'',

``rawUnit '': {

``offsetStart '': 39,

``offsetEnd '': 40,

``tokenIndices '': [``8''],

``name '': ``m''

},

``offsetEnd '': 38,

``offsetStart '': 36,

``tokenIndex '': 7,

``normalizedUnit '': {

``type '': ``length '',

``name '': ``m'',

``system '': ``SI base ''

},

``type '': ``length ''

}

``related '': [

{

``rawName '': ``resolution '',

``connector '': ",

``offsetEnd '': 32,

``relationForm '': ``nmod:of '',

``offsetStart '': 22,

``tokenIndex '': 5,

``descriptors '': [

{

``rawName '': ``spatial '',

``tokenIndex '': ``4''

}

]

}

]

}

if it encounters connected verb tokens. If the value of a matching
POS key in the JSON is null, no more evaluation is needed and the
token tj is returned as a related word.

�e last step in constructing the output is �nding adjectives,
modi�ers, or compounds connected to related nouns. �is includes
words like “spatial” in the example in Figure 1, where “resolution” is
the related noun extracted in earlier steps. Other connected words
could be subjective words like “high” in “a high spatial resolution of
10 m,” or statistical words such as “average.” �ese descriptive words
provide important details about types, sentiment, and the statistical
nature of measurements. �ey create opportunities for higher
�delity grouping of like measurements (e.g. “spatial resolution”
versus “resolution”) and be�er pro�ling of trends and opportunities.
For example, if a satellite’s 100m spatial resolution was described
as “insu�cient” for classifying a certain type of vegetation, this
could represent an opportunity for the higher-resolution HyspIRI
mission to enable new science. Extraction of these type of words is
also performed using POS labels and word dependencies, but the
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Table 3: Experiment Data

Source Sentences Measurements Sent. with Measurements
News 117 58 47
Journal 372 131 93
Total 489 189 140

origin for pa�ern matching is the token corresponding to a related
entity rather than the measurement unit.

Marve’s rule-based architecture is transparent, �exible, and gen-
eral enough to be easily modi�ed to identify other types of rela-
tionships. Rather than providing measurement units as the origin
for Marve’s pa�ern parsing, other types of entities could be pro-
vided. Marve only requires a token from which de�ned POS and
dependency pa�erns originate.

5 EXPERIMENTS AND RESULTS
5.1 Data
Four documents were used for experimentation: two news articles
from the New York Times and two scienti�c publications from the
medical and remote sensing domains. �e �rst New York Times
article, “Dell Gets Bigger and Hewle�-Packard Gets Smaller in
Separate Deals,” was selected from the Technology section and the
other, “A Cleaning Start-Up Wielding Mops, Buckets and 700 Data
Points” was from the business section [][]. �e medical publication,
“Zika Virus Associated with Microcephaly,” is from the New England
Journal of Medicine and the remote sensing publication, “Satellite
soil moisture for agricultural drought monitoring: Assessment of
the SMOS derived Soil Water De�cit Index,” is from Remote Sensing
of Environment[][]. For each document, individual sentences were
manually extracted along with any measurement values, units,
and related words contained within. �e total amount of labeled
sentences and measurements for each type of source is presented
in Table 3. We avoided data sources with more informal language
(e.g. social media) for two reasons: Marve will be most useful
in domains with abundant quantitative discussion and Marve’s
reliance on sentence structure suggests it would perform poorly on
such data.

5.2 Setup
�e labeling of related words was limited to those directly related to
the measurement, most commonly connected by a verb or nominal
modi�ers indicating a prepositional phrase. As an example, consider
the sentence in Figure 1, “HyspIRI has a spatial resolution of 10
m.” In this case, “10 m” is directly modifying “spatial resolution”,
which is then possessed by “HyspIRI.” Because there is a degree
of separation between “10 m” and “HyspIRI,” Marve would only
include “spatial resolution” as related to “10 m.” Extracting second-
order related words is easily achieved in Marve, but we focused on
�rst-order relations to reduce manual labeling e�ort and simplify
the evaluation.

�e experiment demonstrates the precision and recall of Marve’s
related word extraction independent of Grobid �antities’ ability
to accurately extract measurement values and units. Since Marve’s

Table 4: An example of labeled evaluation data for a sen-
tence containing a measurement.

{

``sentence_num '': 41,

``sentence '': ``Samples were fixed in 10% buffered formalin

and embedded in paraffin.'',

``measurements '': [

{

``number '': ``10'',

``unit '': ``%'',

``related '': [

{

``Samples '': []

},

{

``formalin '': [``buffered '']

}

]

}

]

}

pa�ern parsing (used to identify related words) originates at mea-
surement units, units from the ground truth data were fed to the
system rather than relying on Grobid �antities to provide these
values. We assume Grobid �antities can be incrementally im-
proved with additional labeled values and model training. Although
generating this additional training data was outside the scope of
our experiment, our experience with Grobid �antities suggests
that domain-speci�c labels and training is necessary to achieve
viable levels of precision and recall for measurement value and unit
extraction.

5.3 Scoring
Marve parses each of the 489 sentences individually. If one or
more measurements are in a sentence, Marve’s extraction of related
words for each measurement is compared to the corresponding
measurements related words in the labeled data. Because modi�ers
and descriptors are relatively straightforward to extract for an
already-identi�ed related word, they were not considered in the
evaluation (e.g. “bu�ered” in Table 4). For instances where Marve’s
related word extractions match the related entities in the labeled
data (e.g. “Samples” and “formalin” in Table 4), a true positive
is recorded for each matched entity. A false positive is recorded
for each extracted related word without a match in the labeled
evaluation data. A false negative occurs when an entity from the
labeled data can’t be matched to the related words extracted by
Marve. Lastly, the count of true negatives – unrelated words that
weren’t extracted – was deemed excessive for the experiment.

5.4 Results
Marve’s precision, recall, and F-score were evaluated for the two
datasets and are shown in Table 6. Because Marve is rule-based
system rather than a generalized statistical model, the recall met-
ric indicates the extent to which measurement language follows
concrete rules rather than how well a given model represents the
data. As long as the rules generalize and are relatively concise, this
type of system is a�ractive for its speed and transparency. Our
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Table 5: Experiment Results - Confusion Matrices

Predicted Negatives Predicted Positives
Combined

Negatives n/a 55
Positives 115 225

Journal
Negatives n/a 36
Positives 84 143

News
Negatives n/a 19
Positives 31 82

recall results imply that a rule-based system such as Marve can
identify words and entities related to measurements with high �-
delity. While some recall error is expected because language is
varied and o�en misused, these results understate Marve’s recall.
Similar to the �ndings in ClausIE’s experiments, our preliminary
analysis suggests that a signi�cant portion of recall error resulted
from incorrect dependency parsing rather than the occurrence of
unde�ned pa�erns. As these systems continue to improve, Marve’s
recall will improve as well.

Incorrect dependency parsing seems to be the primary source
of error in the precision of extractions, as we would expect preci-
sion to be nearly perfect aside from these errors. �ere are some
dependency pa�erns with ambiguity, where they could or could
not indicate words related to a measurement. For example, for the
sentence ending, “…area of approximately 1300 kmexp 2 (Sanchez,
Mart�nez-Fernandez, Scaini, & Perez-Gutierrez, 2012),” normally
the content in parenthesis is directly related to the measurement.
But in this case, this content is a citation that could apply to the
entire sentence or various portions of it. �ese false positives are
not as frequent as occurrences of grammatical variety or grammat-
ical errors that cause a related word to be missed. �is leads us
to believe that precision error is a be�er indication of dependency
parsing error.

It isn’t surprising that precision and recall were be�er for the
New York Times articles. Compared to scienti�c publications, sen-
tence pa�erns in news articles are simpler. �e use of special
characters, references, diverse punctuation, and domain speci�c
lexicon that can fool a dependency parser is far less common in
news articles. Also, Stanford CoreNLP’s English parser is trained
on the Penn Treebank which contains a large share of Dow Jones
Newswire stories and a much smaller portion of scienti�c abstracts
from the Department of Energy (DOE) [15]. Although there were
performance di�erences across individual data sources, more data
is needed to make generalizations about individual domains (e.g.
performance in remote sensing versus medicine). �e nature of
the Penn Treebank data doesn’t provide any clues either, as the
abstracts from the DOE were from a variety of scienti�c domains.

�ese results indicate that Marve is a sound approach to extract-
ing words forming the context around a measurement. Performance
will improve as Marve’s language pa�ern rules are further scru-
tinized, extended, and re�ned, and advances in underlying NLP
approaches will also li� performance.

Table 6: Experiment Results - Evaluation Metrics

Metric News Journal Combined
Precision 81.2% 79.9% 80.4%
Recall 72.6% 63.0% 66.2%
F-Score 76.6% 70.4% 72.6%

6 APPLICATIONS
6.1 Opportunities for HyspIRI
Marve extractions enabled deeper analysis into the potential of
the HyspIRI mission mentioned in section 2. Within our corpus
of remote sensing-related journal articles, we were able to extract
measurement values and units with improved precision and re-
call. Extractions of related words and entities allowed us to group
measurement types with more con�dence. �ey also created op-
portunities to link semantic publication data to other structured
scienti�c data – an area of research largely unexplored in Earth
Science.

Extracted contextual words o�en contained geophysical features
related to certain measurements. Geophysical features can include
types of vegetation, soils, minerals, rocks, water, and man-made fea-
tures, and they are o�en targeted for measurement by earth science
missions. For such missions, the ability to classify certain features
is essential to meeting the scienti�c objectives of the mission. One
common way to do this involves analyzing a feature’s re�ectance,
which varies across electromagnetic wavelengths to form a sig-
nature []. �ese signatures then contain unique combinations of
in�ection points, helping models to distinguish between di�erent
earth-based features. Given their importance to mission science ob-
jectives, we were curious to explore the discussion around in�ection
points for certain geophysical variables.

To understand discussion around in�ection points for certain
variables we �rst needed to �nd measurements extractions refer-
ring to the portions of the electromagnetic spectrum. �is was
straightforward – measurement units of microns or nanometers
were strong positive indicators of a spectral reference. One alter-
native type of measurement, spectral resolution, is also generally
referred to using nanometers but in remote sensing these values
are usually less than 100 nanometers.

�e next step was joining these measurements with associated
re�ectance signatures. �e ASTER spectral library contains over
2,300 spectra of a variety of materials, several of which were present
in the related words extracted with measurements [5]. One such
example can be seen in �gure 2, which shows the re�ectance sig-
nature of a sample of brown to dark brown clay. �ere is a large
in�ection point at 1,900 nm where there also are several mentions
of “clay” in association with this wavelength (e.g. “1900 nm” or “1.9
µm” or “1800-1900 nm”). �is �gure also shows mentions around
wavelengths that aren’t obvious in�ection points. �ey may war-
rant discussion for other reasons, such as their importance in a
speci�c scienti�c application.

In addition to scienti�c objectives, accurate remote sensing of
clay types has tangible downstream bene�ts to various commer-
cial industries. For example, Polyvinyl chloride (PVC), the third
most-produced placed plastic polymer, is o�en combined with clay
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Figure 2: �e re�ectance of a sample of brown to dark brown
clay is indicated by the blue line. �e green circles repre-
sent the number of extractions that indicated “clay” was re-
lated to a speci�c wavelength or range of wavelengths. �e
bands represent the spectral coverage of the Landsat-8 satel-
lite. �is chart supports the intuitive idea that discussion
about re�ectance of geophysical features would be centered
around in�ection points.

minerals to form nanocomposites used as plasticizers [18] [20].
Speci�c compositions of clay mineral deposits are widely used in
the production of ceramics [16]. And clay composition informa-
tion helps in understanding absorption properties, which can be
used to manage water irrigation more e�ciently [7]. As previously
discussed, understanding the extent to which remote sensing can
support these applications �rst involves gathering measurement re-
quirements. Once these are de�ned, assessment of existing satellites
and airborne instruments is necessary to identify needs and oppor-
tunities (for HyspIRI in this case). Again, this can be accomplished
through integration of structured data with Marve extractions. Fig-
ure 2 shows bands indicating the spectral coverage of Landsat-8, a
satellite developed by NASA and the U.S. Geological Survey (USGS)
and launched in 2013 [17] [12]. �e pronounced in�ection point
at 1,900 nm isn’t captured by Landsat-8, which could represent an
opportunity for HyspIRI. If other publicly-sponsored satellites also
are unable to capture this wavelength and HyspIRI does, HyspIRI
would be uniquely positioned to support scienti�c and industrial
applications relying on accurate classi�cation of types of clay.

True understanding of visualizations like �gure 2 require deeper
research. And precise quanti�cation of the impact of additional
data provided by HyspIRI is impossible. However, the automatic
collection and integration of semantic data with existing structured
scienti�c data represents a large step forward identifying where
further research is warranted and accelerating similar analysis.

6.2 Knowledge Base Construction
�e construction of a measurement knowledge base for remote
sensing publications would be of great value to researchers and
policy-makers. For example, in the Remote Sensing of Environment
paper used in our experiment the authors write, “Although there is
more and more information about these soil water parameters, they
are not usually included in standard soil databases. For that reason,
researchers sometimes have simply used soil parameter data pub-
lished in the literature.” A structured repository of measurement
information would allow researchers to be�er explore scienti�c re-
sults, experimental designs, instrument speci�cations, and general
discussion around speci�c measurement types and their relation-
ships to time, locations, organizations, and other domain speci�c
entities. �e value and feasibility of constructing similar knowledge
bases has been demonstrated by a DeepDive system, PaleoDeepDive
that has processed over 300,000 scienti�c documents in an e�ort
to replicate the manually curated Paleobiology Database (PBDB).
�is database contains hundreds of thousands of taxonomic fossil
names and a�ributes manually entered by researchers who have
si�ed through scienti�c documents over the last two decades. Pale-
oDeepDive was able to re-create PBDB with greater than double
the recall of humans and roughly equal precision.

Instead of taxonomic fossil information, an Earth Science knowl-
edge base would include metrics like classi�cation accuracies for
various geophysical variables, instrument speci�cations like revisit
rate, spectral resolution, or swath, and “ground-truth” data used in
evaluating remotely-sensed data. Marve signi�cantly reduces the
manual e�ort needed to create such a knowledge base and can be
easily integrated into DeepDive, which can add non-measurement-
based extractions and also help categorize measurements and their
relationships with other entities. DeepDive has previously been
used to derive relationships between measurements and related
words or entities (e.g. PaleoDeepDive), but users are le� to their
own devices to extract measurements and possible related words
and entities. �ey also need to write features used by the inference
engine to identify and classify relationships between extractions.
Marve automates these extractions and can provide DeepDive de-
velopers with valuable features (e.g. related context) for further
classifying measurements and their surrounding relationships.

Earth Scientists are the most obvious bene�ciaries of an Earth
Science knowledge base, but several other decision-makers would
bene�t as well. For example, Resources for the Future (RFF) is lead-
ing a NASA-funded consortium, Valuation of Applications Bene�ts
Linked with Earth Science (VALUABLES), which is studying the
socioeconomic bene�ts of Earth observations. �ey are utilizing the
Value of Information (VoIA) framework to quantify value as a func-
tion of decision-maker uncertainty, what’s at stake, the cost to make
use of information, and the cost of substitutes (e.g. space-derived
data versus airborne data) [13]. An Earth Science knowledge base
could inform all of these areas, helping policy-makers and stake-
holders evaluate past and future missions.

7 FUTUREWORK
7.1 Expanding Experimentation
Research and applications involving measurement extraction are
limited. Marve creates second-order extractions (i.e. extractions
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built using other extractions) using �rst-order extractions that are
either new (Grobid �antities) or have progressed signi�cantly
in recent years (Word dependencies, POS tagging). As a result,
publicly-available labeled datasets don’t exist for evaluating Marve.
�e evaluation dataset used in our experiment is relatively small,
and we hope to extend this dataset and employ a linguist to review
labels.

Marve also relies on three di�erent types of �rst-order extrac-
tions: CoreNLP’s POS tags, CoreNLP’s word dependencies, and
Grobid �antities’ measurement values and units. We were able
to easily exclude Grobid �antities as a source of error in our ex-
periment by using the labeled evaluation measurement value and
units rather than output from Grobid �antities. However, Marve
is more tightly coupled with CoreNLP and CoreNLP errors could
not be isolated in the experiment without hand labeling of POS tags
and word dependencies. �is process is tedious and requires lingual
expertise to perform accurately and consistently. While we have
focused on measurement-rich scienti�c publications in our develop-
ment and applications of Marve, we plan to explore its performance
on syntactically labeled data such as the Penn Treebank [21]. Al-
though measurements will be more sparse, experiments with such
data sources will allow for Marve to be evaluated independent of
�rst-order extractions.

We are also interested in understanding the performance of
Grobid �antities at di�erent levels of training and customization.
Although generating additional training data was outside the scope
of our experiment, we are curious how well a Grobid �antities
model trained on a pre-existing set of labeled data would generalize.
�is will allow practitioners to weigh the costs and benene�ts
of domain-speci�c labels and training by understanding Grobid
�antities’ out-of-box performance on unseen data. �en, as we
expand evaluation data for Marve, we hope to also work with
groups interested in measurement extraction to generate training
examples for Grobid �antities in various domains. �is will help
us understand the ceiling for precision and recall for extraction of
measurement values and units.

COULD TALK ABOUT CLEAR EARTH AS EXAMPLE OF PART-
NERSHIP

7.2 Extending Marve
Grobid �antities and CoreNLP both have di�culty handling long
inputs. For Grobid �antities, this is addressed by using CoreNLP’s
sentence spli�er to pass individual sentences to Grobid �anti-
ties. However, users must perform chunking for longer inputs to
CoreNLP and consequently Marve. We plan to automate this data
preparation by integrating paragraph-level chunking for various
input formats. �is will include spli�ing on <p> tags for XML or
HTML input or
n characters in extracted publication content. We plan to eventu-
ally extend our pipeline to accept inputs to raw documents using
Apache Tika. Integration of Tika will allow us to extract textual
content from most document types, which can then be passed to
our chunker before being fed to the existing Marve system [].

In addition to extending pre-processing capabilities, several ap-
proaches have been identi�ed to improve the usefulness of ex-
tractions. For example, Marve doesn’t leverage the full extent

of CoreNLP. Incorporating CoreNLP’s NER tagging would allow
words related to measurements to be categorized into groups like
person, location, or organization. With this information in Marve’s
output, users will have richer information to group and under-
stand measurements (e.g. “Which measurements were related to
HyspIRI?”). Another component of CoreNLP, coreference reso-
lution, can also be used to disambiguate pronouns included in
extractions.

N-GRAMS
Increased semantic information embedded in Marve extractions

increases the potential for automatic classi�cation of measurements.
While Marve represents a large step forward in the collection of se-
mantic measurement information, the burden is on the user to make
use of this information, which will involve grouping or classifying
measurements in almost all cases. DeepDive addresses this problem
by allowing users to write “labeling functions,” which provide the
system with features used to classify di�erent types of relationships.
We plan to explore further integration of Marve into DeepDive and
its new successor, Snorkel, while also exploring unsupervised ap-
proaches to measurement grouping. We view providing a means
for automatically or semi-automatically classifying measurements
as an important step in Marve’s development.

8 DISCUSSION AND CONCLUSIONS
We propose a baseline method for contextual measurement extrac-
tion, a sub-area of information extraction that has been largely
unaddressed in the research community. Our initial �ndings are
positive, and as we continue to improve Marve and apply it in new
ways we hope to spur others to explore new approaches and employ
them for their own purposes. Semantic measurement information
is inherently richer than raw data – someone found it worthy of
discussion. And as the world becomes increasingly inundated with
textual data, Marve and other related approaches will help us �nd
relevant information and develop a broader understanding of our
domains. We view Marve as an opportunity to expedite scienti�c
research and inform scienti�c investment, two areas essential to en-
couraging innovation and demonstrating the importance of science
to society.
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