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Voyager 1 & 2

• Voyager 1 & 2: Jupiter and Saturn flybys [13]

• Voyager 2: Uranus and first flyby of Neptune

Discovery of: 
• 22 new satellites at the four outer planets
• Jupiter's rings, new information on rings of 

Saturn, Uranus and Neptune
• Magnetic fields of Uranus and Neptune
• Volcanism on Io, “geysers” on Triton
• Auroral zones on Jupiter, Saturn & Neptune
• Heliopause boundary

Informed next generation of missions

All in about 5 Tb of data![5]
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Yearly Data Return Comparison

1977 deep space
Voyager 1 & 2 = 0.14 Tb/year (5Tb total) [5]

Planned 2022 deep space
Europa Mission = 0.86 Tb/year (2.6 Tb total)

2008 Mars MSL Curiosity = 
24.38 Tb/year (102 Tb total)

Planned 2021 Earth
NISAR = 9308 Tb/year 
(27923 Tb total)
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What Drives Data Return?

• Two primary technologies throttle bandwidth
– Telecommunications
– On-board memory

• Explored how mission capabilities have evolved 
over time
– Volume of raw data returned by 17 missions

• Telecommunication system capabilities
• On-board memory capacity

– Ground system capability
• Availability of ground stations
• System efficiency by reducing losses, increasing gain
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Galileo: Forced Improvement

• Galileo was important scientifically and for 
the engineering improvements it provided

• High gain antenna deployment failure led 
to reliance on low bandwidth 
command/telemetry link

• Caused a 100x improvement in data rates[1]

– Original data rate at Jupiter: 10 bps
– Improved compression schemes and 

encoding brought data rate to 100bps
– Ground (DSN) arraying and improvements 

brought rate to 1000 bps

• Lessons learned have been used on all 
subsequent missions
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Mars Missions

• Distinct from other deep 
space missions

• Significant infrastructure 
for data return
– Relay orbiters send data 

faster, for longer durations
– Reduces rover complexity 

UHF

X-band
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Earth Missions

• Earth orbiters have numerous advantages compared to deep space 
missions
– Telecommunications space loss is ~100dB less at Earth or better
– Greater availability of downlink opportunities (through the NEN and 

other sites)
– Less latency of data means less storage duration therefore data can be 

collected more frequently

• This allows Earth missions to meet signficiant requirements: high-
resolution, long-time series, global coverage
– Missions can downlink each orbit: EOS-Aqua produces about              

0.7 Tb/day[28]

– Missions can behave as “operational” allowing real-time target 
observation: Landsat-8[27]

– Missions can dynamically map the Earth with long time series: NISAR 
provides global coverage every 12 days for 3 years
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How NISAR Supports Large SAR Data Production

• NASA-ISRO Synthetic Aperture Radar produces 26 
Tb of data per day to study 

1. Ice dynamics: ice sheets, glaciers, and sea level
2. Ecosystems and biomass changes
3. Solid Earth deformation including hazard response 

i.e. volcanoes or earthquakes
4. Coastal processes in India

• Requires multi-gigabit per second data rates
– Development of new Ka-band modulator

• 3.45 Gbps
• High efficiency LDPC encoding

– High capacity, simultaneous gigabit per second SSR I/O
• 12 Tb flash. Completely filled & drained >2 times a day
• 12 Gbps I/O capability

• Downlink approximately 17 times per day, about 
1.8Tb per orbit

• Ground data products balloon to 95 TB per day
– Over 100 PB for the 3 year mission
– Using commercially available storage systems, cloud-

based storage and access for scientists
– Tens of gigabit per second data transfers are possible

SSR

JPL L-band SAR

Gimbal / Antenna
Ka-band 
Telecom

ISRO S-band SAR

JPL Ka-band: 3.45 Gbps

Data Rates < 4 Gbps

Data Rates < 5.2 Gbps

NEN

SDSCommercial 
storage ~100 PB

Scientists
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General Trends on the Studied Missions

• Telecommunications
– Most missions have used X-band since Voyager[4,10,15,24,28]

• Cassini, Mars Odyssey, MRO, Dawn, Landsat 8, etc.

– Ka-band systems are up-and-coming
• LRO, Europa Mission, NISAR

– Data rates are increasing[6,9,11,22,26]

• Deep space usually in the hundreds of kbps. Starting to reach Mbps
• Mars and Earth missions in Mbps. Earth starting to reach Gbps 

• Memory
– Tape drives were used on early missions but have been phased out[12]

• Could provide large capacity but required mechanisms added failure modes

– Since early 1990’s solid state RAM technology has been primary memory 
technology[11,23,24]

• Improvements to density, reliability and radiation tolerance

– Increased flash memory utilization is likely[7,23]

• Increased capacity and lower power needs
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Ground System Evolution

• The DSN and NEN both evolved from networks established 
in 1958 and developed from a need to communicate to the 
probe and human missions

• Both now have multiple permanent sites around the world 
• S and X-band are ubiquitous. Ka-band is in development for 

multiple sites

DSN – Canberra
NEN Sites
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DSN and NEN
Evolved with the missions throughout the years

• Early focus: establish network & use cases
• 64m upgraded to 70m during Voyager
• Arraying antenna
• Data transmission with high reliability

• Recent: increasing efficiency & automation
• 34m antenna now nearly same capability
• Ka-band Rx/Tx
• High rate data transfer between the sites
• Upgrade to optical communications

• NEN focused on science mission needs
• Added high latitude stations in the 1990s 

to support large data volume 
downlink[16,17]

• Expand as mission data needs increase
• Expand to lunar & non-LEO missions[15]

Ref. [19-21]

Ref. [18]
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Mission Data Produced
Blu-ray Disc (50GB)

Voyager 1 & 2 5 Tb (1977 – now)[12] 11.6

Galileo Est. 0.24 (1989 – 2003) 0.614

Cassini 7.86 Tb (1997 – 2017) 20.1

DAWN 1.65 Tb (2007 – now) 4.22

Juno 1.5 Tb (2011 – 2018 est.) 3.84

Europa 2.6 Tb/mission (Planned 3 yrs.) 6.66

MER – Spirit 23.17 Tb (2003-2011) 49.3 

MER – Opportunity 63.97 Tb (2003 – now) 163.8

MSL 101.62 Tb (2011 – now) 260.1

Mars Odyssey 135.34 (2001 – now) 346.5

MRO 207.5 Tb (2005 – now) 483.1

EOS-Aqua 3745.05 Tb (2002 – now) [28] 8719.6

LRO 5610.67 Tb (2009 – now) 14363.3

Landsat 8 20064 (2013 – now) [27] 51363.8

SWOT 8,650.5 Tb (Planned 3 yrs.) [26] 20141.0

NISAR 27922.5 Tb (Planned 3 yrs.) 65012.1

Data Return by Mission
M

ars M
issio

n
s

Earth
 O

rb
iters

D
eep

 Sp
ace

12



Jet Propulsion Laboratory
California Institute of Technology

Mission Data Produced
Blu-ray Disc (50GB)

Voyager 1 & 2 5 Tb (1977 – now)[12] 11.6

Galileo Est. 0.24 (1989 – 2003) 0.614

Cassini 7.86 Tb (1997 – 2017) 20.1

DAWN 1.65 Tb (2007 – now) 4.22

Juno 1.5 Tb (2011 – 2018 est.) 3.84

Europa 2.6 Tb/mission (Planned 3 yrs.) 6.66

MER – Spirit 23.17 Tb (2003-2011) 49.3 

MER – Opportunity 63.97 Tb (2003 – now) 163.8

MSL 101.62 Tb (2011 – now) 260.1

Mars Odyssey 135.34 (2001 – now) 346.5

MRO 207.5 Tb (2005 – now) 483.1

EOS-Aqua 3745.05 Tb (2002 – now) [28] 8719.6

LRO 5610.67 Tb (2009 – now) 14363.3

Landsat 8 20064 (2013 – now) [27] 51363.8

SWOT 8,650.5 Tb (Planned 3 yrs.) [26] 20141.0

NISAR 27922.5 Tb (Planned 3 yrs.) 65012.1

Data Return by Mission
M

ars M
issio

n
s

Earth
 O

rb
iters

D
eep

 Sp
ace

13



Jet Propulsion Laboratory
California Institute of Technology

Conclusions

• Data production to continue increasing
– Next class of missions require higher 

resolution, long time series, etc. to achieve 
science objectives

– More efficient encodings and higher rate 
telecommunications systems developing

– Larger memory enabled by flash

• Deep space missions will remain in the 
tens of terabits due to challenges of deep 
space communication

• Mars has significant infrastructure and will 
be grouped near hundreds of terabits per 
mission

• Earth orbiters will see most growth and 
will continue to produce petabits of data

Earth missions

Mars missions

Deep space missions
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