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NuSTAR

(Nuclear Spectroscopic:Telescope Array)
NASA Small Explorer (SMEX)
Launch date: 2012 June |3
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Pointed observations: -

3-79 keV
12’ x 12’ FoV |
as of Nov |, 288 refereed papers submittted
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Resolving the Peak of the Cosmic X-Ray Background
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cosmic X-ray background:

e >80% resolved below 8 keV
* NUSTAR resolves ~35% at 8-24 keV

XRS could resolve most of
the CXB at its peak!
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Ueda et al. 2003, ApJ, 598, 886




Resolving the Peak of the Cosmic X-Ray Background
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Black Hole Physics
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GX 339-4 |
(2) Accretion disk emission Black hole binary
upscattered in hot corona
of » Data and total model
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Corona Ad off accretion disk
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* improved black hole spin measurements
* improved understanding of the corona



Black Hole Physics: Nature of the Corona

e base of the jet! atmosphere of the inner accretion disk?

e cut-off temperatures combined with sizes (e.g., from reverberation mapping) show
coronae to be hot and compact, but based on just |16 sources with cut-off
temperatures measured/constrained to date (and not all with size measurements)



Black Hole Physics: Spin Measurements

inner radius ~1r,

* improved measurement of continuum straddling Fe KX
* model degeneracies broken by relativistic blurring of Compton reflection hump



Black Hole Physics: Reverberation Mapping

e time domain data allows dissection of various spectral components and derivation
of their spatial separations (key to observe reflection hump)

e many NuSTAR observations consistent with the “lamppost model”, where corona is
compact region along axis of the black hole



Black Hole Physics: Outflows
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* NUuSTAR sensitivity above |10 keV crucial for modeling P-Cygni Fe profiles for

PDS456, allowing measurement of wind opening angle and energetics
Nardini et al. 2015, Science, 347, 860



Black Hole Physics: Intrinsically Weak Coronae?

Disk Wind ?
Shielding UV Driven e &S
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 NuSTAR has identified several (BAL) AGN (e.g., Mrk 231) which are very faint
in the X-rays, even out to high energies:
e obscuration hiding the X-ray emission?
Luo et al. 2013,Ap), 772, 153

e intrinsically weak / quenched coronae? Tong ot l. 2014 s, 785, 19
Luo et al. 2014,Ap), 794,70



Obscured AGN

Approximate torus geometry:

Y I I I

\ o
- \ "/'
- \ -4
T -
0.8[ ‘ . q
\
- L -

0.6 | N

- — — — - Linear fit to data \ '
0.2 + = -

\
\ =
- \ -
o -
0,0 1 | 1 N

10" 10% 10" 10* 10
Intrinsic 2-10 keV luminosity (erg s)

Torus covering factor
|
=
7
7’
/’
4 4 l 1 A

e NuSTAR has found, with scant statistics, evidence for an inverse correlation
between AGN luminosity and torus covering factor

Brightman et al. 2015, Ap], 805, 41



Supernova Remnants

NuSTAR Sees Titanium Glow in Supernova 1987A

Asymmetric cloud of supernova debris Ti%
mostly thrown away from us
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e Ti** is an ideal tracer of supernova explosion, since it is a radioactive line
associated with material created close to the “fallback region” in the explosion

Boggs et al. 2015, Science, 348, 670



Supernova Remnants

Radioactive Titanium

* how do stars explode!
e clumpy distribution of radioactive titanium in Cassiopeia A indicates that the
expected stall in the supernova explosion is broken by a “sloshing” instability

Grefenstette et al. 2014, Nature, 506, 339



Diffuse Hard X-ray Emission at Galactic Center
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Perez et al., 2015, Nature, 520, 646
Hailey et al. 2016,Ap), 826, 160




Galactic and Nearby Galaxy Surveys

e compact remnants in the Milky Way and nearby galaxies (as a function of age,
metallicity, etc...)



Ultraluminous X-Ray Sources (ULXs)

e ULXs have unique spectra above ~8 keV,
indicative of distinct (super-Eddington?)

accretion modes
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Ultraluminous X-Ray Sources (ULXs)

NuSTAR detects coherent pulsations from a ULX

M82 center
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Bachetti et al. 2014, Nature, 514, 202
Israel et al., arXiv:1609.06538
Fuerst et al, arXiv:1609.07129
Israel et al., arXiv:1609.07375




Dark Matter
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Science Summary, Selected Sample

Science Key Energy Range
cosmic X-ray background 20-40 keV
black hole coronae to at least ~100 keV
relativistic reflection to ~40 keV
outflows to ~20 keV
obscured AGN to ~40 keV
supernova remnants (Ti%4) to ~85 keV
ULXs to ~20 keV
dark matter to ~40 keV
galaxy clusters to ~20 keV

blazars / jets

to at least ~100 keV




Implementation

* separate high-energy telescope(s)?
* dedicate inner shells of the optics to highest energy photons!?
* hybrid detector, with lower-energy sensitive Si CCDs sitting atop higher-energy

sensitive Cd(Zn)Te detectors (ala NuSTAR)?




My Assessment

e Lots of very exciting science if we go past |10 keV. In particular, since only
comparison is a SMEX, we can counter fears that XRS only provides incremental
science gains.

e There’s a range of science gains for different energy range enhancements. Even just
going to 20 keV buys some science, reaching 40 keV buys even more, etc....

e Much of the enhanced science doesn’t require the exquisite optical quality of XRS
at lower energies.

e On the flip side, | see the most likely path to the selection of XRS is that we come
in significantly cheaper than the other Flagships, so we want to stay simple.
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e the High-Energy X-ray Probe (HEX-P), a probe-class NuSTAR follow-on under
development for the current mission concept study call
e contact me (and/or Fiona Harrison) if you're interested




