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• Until recently, CubeSats and NanoSats have relied solely upon heaters and 

thermal coatings to achieve thermal control. 

• Deployable solar panels are changing CubeSat thermal dissipations: 

– More Power Available

– Larger Power Dissipation Ratio

• CubeSats are starting to be used on interplanetary missions:

– MarCO is accompanying Insight Spacecraft to Mars in 2018 [1]

– Missions beyond Mars will likely require a thermal turn down device.

Introduction

MarCO

CubeSat  [1]
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• Louvers

– Typically use bimetallic springs and low ε vanes 

and yield turn down ratio of ~ 7:1 [2]

– Recently adapted for CubeSats by GSFC [3, 4]

– Planned for use on Dellingr CubeSat [4]

• Thermal Switches 

– Typically use paraffin wax phase change to 

provide a turn down ratio of up to 100:1 [2]

– Heat Switch Radiators have been developed with 

a turn down ratio of 20:1 [5]

• Fluid Loops

– Valves or pump modulation used for turn down

– Ongoing work though NASA/University 

Partnerships [7, 8]

• Primary challenge for turn down technology in 

CubeSats is cost and volume constraints!

Current Turn Down Technology

Cube Sat Louver [4]

Heat Switch [6]

CryoCubeSat Concept [7]
3



Jet Propulsion Laboratory
California Institute of TechnologyConcept 

• Heat Switch has two modes:
- Hot (ON): Plates are in 

contact through bolts

- Cold (OFF): Plates will be 

separated from one another

• Shape Memory Alloys (SMA)
- Crystalline structure can 

change between Martensite

(Cold) and Austentite (Hot) 

- “Remembers” original shape 

and deforms once heated 

and/or cooled

- One Way vs. Two Way

1 Way vs. 2 Way SMAs [9]

Hot Side

Cold Side

Hot Side

Cold Side
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• Criteria for Selecting SMA Washer:

- Temperature Range

- Elongation (% strain)

- Two – Way

- Cost

- Lead Time

• Selected Washer:

- Intrinsic Devices – Nitinol (Alloy D)

- 𝜀 = 1.25 %

- Operable Temp Range

• -196 °C to 200 °C
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13 

mm
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Mass Volume

0.107 kg 1.76 x 10-5 m3
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Part Description Quantity Cost 

Flat Wide Washer 316 Stainless Steel, M2 100 $4.17 

Belleville Washer Series 300 Stainless Steel, M2 24 $26.44

Thin Nut 316 Stainless Steel, M2x0.4 25 $3.04 

Aluminum Plate 2024-T3 2 $30.90 

SMA Washers Nitinol, 2-way SMA 4 $600

Bolt 316 Stainless, M2x0.4-6g, length: 16 mm 50 $9.77 

Spacers Delrin® Acetal Resin, M2 40 $36.00 

Total Cost: $710.32

Parts List
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• Bolt Torque = 176 N-mm

• Bolt Preload = 440 N
– P = T/cD = (176 N-mm)/(0.2*2mm) = 𝟒𝟒𝟎 𝑵

• 𝜎𝑇−𝐵𝑜𝑙𝑡 = P/Abolt = 𝟏𝟒𝟎. 𝟏 𝑴𝑷𝒂
– 29.1 % of Allowable

• 𝜎𝐵−𝑆𝑀𝐴 = Τ𝑃 𝐴𝑆𝑀𝐴 = 𝟔. 𝟗𝟔 𝑴𝑷𝒂
– 1.58 % of Allowable

• 𝜀𝐵𝑜𝑙𝑡 = Τ𝜎𝑇−𝑏𝑜𝑙𝑡 𝐸316−𝑆𝑆 = 𝟎. 𝟎𝟎𝟎𝟕𝟑𝟕𝟒
– ∆𝑙 = 𝑙 ∗ 𝜀 = 0.0000133m = 𝟏𝟑. 𝟑 𝝁𝒎

• ∆𝑙𝑆𝑀𝐴= 𝑙𝑆𝑀𝐴 ∗ 𝜀 = 𝟔𝟑. 𝟐 𝝁𝒎

– Change in length of SMA 5 times greater than that of bolts 
guarantees gap in OFF position

Stress Analysis

9



Jet Propulsion Laboratory
California Institute of Technology

• 200g force applied to the assembly:

– 𝑭𝒈 = 200 ∗ 9.81
𝑚

𝑠2
∗ 0.1067 𝑘𝑔 = 𝟐𝟏𝟎 𝑵

– 𝑭𝒃𝒐𝒍𝒕 = 𝐹𝑝𝑟𝑒𝑙𝑜𝑎𝑑 +
𝐹𝑔

4
= 𝟒𝟗𝟐. 𝟓 𝑵

Stress Analysis

A) B)

𝜎𝑇−𝐵𝑜𝑙𝑡 = P/Abolt = 𝟏𝟓𝟔. 𝟖 𝑴𝑷𝒂
32.5% of Allowable

𝜎𝐵−𝑆𝑀𝐴 = Τ𝑃 𝐴𝑆𝑀𝐴 = 𝟕. 𝟕𝟗 𝑴𝑷𝒂
1.76 % of Allowable

𝜏𝑏𝑜𝑙𝑡 = ൗ
𝐹𝑔

4
𝐴𝑏𝑜𝑙𝑡 = 𝟏𝟔. 𝟖 𝑴𝑷𝒂

5.81% of Allowable

4 ∗ 𝜇 ∗ 𝐹𝑝 > 𝐹𝑔 𝑵𝒐 𝑺𝒍𝒊𝒑

580.8 N > 210 N 10
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• Use 4 Belleville Washers in Series:

• With a tolerance of 0.6 mm + 0.1:
– Gap size will be 1.0 to 1.4 mm

• Lower bound allowable washer stack height is 1.0 mm
– Maximum loaded Belleville washer thickness = 0.25 mm
– 4 x 0.25 mm = 1.0 mm
– Aluminum plates will contact before spring stack is bottomed out

• Upper bound allowable washer stack height is 1.4 mm
– Minimum unloaded Belleville washer thickness = 0.38 mm
– 4 x 0.38 mm = 1.52 mm
– Guaranteed gap of > 0.12 mm gap when spring stack is fully expanded

Tolerance Analysis
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WCH Minimum Conductance WCC Maximum Conductance

GSwitch 𝑮𝑺 −𝑶𝑵 𝑮𝑩𝒐𝒍𝒕𝑨𝒔𝒔𝒆𝒎𝒃𝒍𝒚 + 𝑮𝑺−𝑶𝑭𝑭 + 𝑮𝑩𝒆𝒍𝒍𝒔

GAssembly (𝑮𝑹𝒂𝒅
−𝟏 + 𝑮𝑺−𝑶𝑵

−𝟏 + 𝑮𝑪𝒐𝒏𝒅
−𝟏 )−𝟏 𝑮𝑩𝒐𝒍𝒕𝑨𝒔𝒔𝒆𝒎𝒃𝒍𝒚 + 𝑮𝑺−𝑶𝑭𝑭 + 𝑮𝑩𝒆𝒍𝒍𝒔

−𝟏
+ 𝑮𝑹𝒂𝒅

−𝟏
−1

GRad

GCond

GS-ON
GRad

GNut

GWash

GBolt

GWash

GSMA

GS-OFF
GBells
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WCH Minimum Conductance WCC Maximum Conductance

GSwitch 0.333 W/K 0.053 W/K

GAssembly 0.041 W/K 0.012 W/K

0.049 W/K

0.740 W/K

0.016 W/K

0.700 

W/K

0.060 

W/K

0.018 

W/K

0.280 W/K

0.520 W/K

0.002 

W/K
0.037 

W/K

Note: WCC conductance will be reduced 

due to thermal contact resistance

0.333 

W/K
Bolt 

Assembly 

BottleNeck

13



Jet Propulsion Laboratory
California Institute of TechnologyHeat Switch Assembly

1) 2) 3)

4) 5) 6)

NiTi Washer

Delrin Spacer

Al Plate

Belleville Washers
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1) 2)

3) 4)

TCHeater

TCHotSMA

Heater

TCColdMid

TCColdSMA

TCTopShroud

TCBottomShroud

15 layer MLI

Kapton Radiator

Kapton Shroud
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1. Place assembled article in the TVAC with steel wires and connect all 
TC’s and Power Supply to Heater.

2. Close TVAC Chamber.

3. Bring chamber pressure < 1 x 10-3 torr, so that all pressure values are 
in the 10-4 torr range.

4. Turn on cooling lines for shroud to bring to -70 °C.

5. Once Shroud reaches -70 °C turn on power for heater.

6. Wait until test article TCs reach steady state with a criteria of 0.2 °C/hr
for a 1 hour duration.

7. Turn Off heaters and bring chamber back to room temperature.

Test Procedure
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Run Description Heater 

Power (W)

Voltage (V) Shroud 

Temperature 

(°C)

Chamber

Pressure 

(Torr)

1 Hot Case 4.5 13.4 -70 1 𝑥 10−4

2 Cold Case 0.1 2.0 -70 1 𝑥 10−4

Test Matrix
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Tshroud TC TH
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Tshroud

TC

TH
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• Relevant Equations:

– 𝑄𝑀𝐿𝐼 = 𝐴𝜀∗𝜎 𝑇𝐻
4 − 𝑇𝑆ℎ𝑟𝑜𝑢𝑑

4

– 𝑄𝑅𝐴𝐷 = 𝐴𝜀𝜎 𝑇𝐶
4 − 𝑇𝑆ℎ𝑟𝑜𝑢𝑑

4

– 𝑄𝑆𝑤𝑖𝑡𝑐ℎ = 𝐺𝑆𝑤𝑖𝑡𝑐ℎ 𝑇𝐻 − 𝑇𝐶
– 𝑃𝐼𝑁 = 𝑄𝑆𝑤𝑖𝑡𝑐ℎ + 𝑄𝑀𝐿𝐼

• Methods to Calculate G

– 𝐺𝑠𝑤𝑖𝑡𝑐ℎ, 𝑚𝑎𝑥 =
Τ𝑃𝐼𝑁 𝑇𝐻 − 𝑇𝐶

– 𝐺𝑠𝑤𝑖𝑡𝑐ℎ,𝑚𝑖𝑛 =
(𝑃𝐼𝑁 −𝑄𝑀𝐿𝐼 −𝑄𝑇𝐶 −𝑄𝐻𝑊)

(𝑇𝐻 − 𝑇𝐶)

– 𝐺𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦, 𝑚𝑎𝑥 =
Τ𝑃𝐼𝑁 𝑇𝐻 − 𝑇𝑆ℎ𝑟𝑜𝑢𝑑

– 𝐺𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦, 𝑚𝑖𝑛 =
(𝑃𝐼𝑁 − 𝑄𝑀𝐿𝐼 − 𝑄𝑇𝐶 − 𝑄𝐻𝑊)

(𝑇𝐻 − 𝑇𝑆ℎ𝑟𝑜𝑢𝑑)

Test Method and Uncertainty 

QMLI
QHeaterWire = QHW

QTC

GSwitch

PIN

QSwitch

TH

TC

QTC QRad
QSteelWires

SMA
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Key

Hot

Cold

Test Results

Cold Case 

Tavg = -61 °C

Hot Case 

Tavg = 41.5 °C
Turndown Ratio

GSWITCH 0.019 to 0.022 W/K 0.460 to 0.520 W/K 23 to 25 : 1

GASSEM 0.006 to 0.008 W/K 0.034 to 0.039 W/K 5.2 to 5.8 : 1

4.6 W

0.09 W

0.25 W

0.012 W

0.07 W

0.002 W

0.24 W

0.006 W

46 °C

-59 °C

37 °C

-63 °C

QTC QRad
QSteelWires

SMA
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• TVAC testing takes a long time!
– Even with an article this small and simple in nature, multiple days are 

required for each part of the assembly and testing process.
• Day 1: Assembly of Test Article

• Day 2: Set Up Test Article in TVAC

• Day 3: Cold Test

• Day 4: Hot Test

• Better Understanding of Radiation and Conductive Heat Transfer 
Concepts and applications to design.

• Time + Budget + Wants = Compromise

• Broaden Knowledge Spectrum in Aerospace Testing 
Requirements and Types

Lessons Learned 
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Machined out center 

portion of radiator

• Machine out center portion of radiator

– Ensures the two plates only contact near SMA region.

– Ensures the two plates never contact in center region. 

• Larger Area Radiator

– Improve the Gassembly cold to hot ratio

• Titanium Bolts and Belleville Washers

– Reduced cold side heat leaks

• Low Profile Flanged Nuts and Bolts

– Reduce the total stack height

• Thicker Radiator Plate

– More Mass, Improved radiator efficiency

• Additional Belleville Washers

– More Volume, Reduced cold side conductance

• Helical springs or wave washers instead of Belleville washers

– Less heat leak, Less separation force

• White Painted Radiator

– Improved radiator efficiency

• Use two NiTi washers

– More Volume, Increased Cold Side Gap

Design Improvements

Two NiTi Washers 23
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• Build and Test Heat Switch with Design Improvements

• Test at intermediate temperatures

– Develop understanding of heat switch’s hysteresis

• Run the heat switch through multiple hot and cold cycles

– Understand any longer term effects of cycling

• Qualification Testing:

– Vibration Testing

– Shock Testing

Future Work
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Heat Switch [6]

Paraffin Heat Switch [2, 6]SMA Heat Switch

Heat Switch 

Conductance Ratio

Cost

Assembly Height

Overall Assembly 

Power Turn Down Ratio

~ $1,000

3 to 13 mm 

~ 5.5:1

~ 24:1 ~ 100:1

~ 20:1

~ $100,000

2 to 17 mm
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• Successful design, fabrication, and 
testing of a SMA actuated heat switch 
was performed in a 12 week period. 

• The tested heat switch had a ON/OFF 
conductance ratio of ~ 24:1. 
– ~ 5.5 :1 for the heat switch radiator 

assembly.

• The heat switch can be built without 
any specialized equipment or skills, at 
a cost of < $1000. 

• This heat switch shows promise for 
missions which require a low cost, 
moderate performance heat switch. 

Conclusions
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Questions?
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