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A NEW CONCEPT OF STABILITY IN ORBIT PROPAGATION, USEFUL
FOR QUANTIFYING NUMERICAL ERRORS

Javier Roa∗, Hodei Urrutxua†and Jesús Peláez‡

We present the concept of topological stability in the numerical propagation of
orbits, and show how it results in a useful new method for measuring the global
numerical error of an orbit propagation. The concept applies to any problem in
orbital dynamics. Moreover, it can be extended to any three-dimensional system
of differential equations of second order. In order to assess the topological sta-
bility of a given integration a special metric is introduced, which can be used to
estimate the numerical errors robustly. The method is particularly well suited for
dealing with strongly perturbed and chaotic systems. The construction is based on
the constraint imposed by the Hopf map that supports the Kustaanheimo-Stiefel
transformation. Generic concepts of stability are translated to KS space.

INTRODUCTION

The theoretical development in the present paper provides a practical technique for measuring the
global error in the numerical propagation of a given orbit. The next section explains the algorithm
in a self-contained way. The method stems from the new concept of topological stability, which
relates to how well the topological structure of the Kustaanheimo-Stiefel (KS) space is preserved
during the integration.

The connection between the KS transformation and the Hopf map reveals why four dimensions
are required to regularize three-dimensional motion. The extra dimension, represented by a Hopf
fibration, introduces a degree of freedom in the problem. The solution to three-dimensional motion
is no longer unique, as there are now infinitely many trajectories in KS space that depart with the
same exact initial conditions r0 and v0. Realizing that all trajectories originating from the same fiber
should represent the same solution in Cartesian space imposes new constraints on the propagation
of the orbit, and results in the concept of topological stability.

There are different methods available for measuring the accuracy of the propagation. If the system
admits conservation laws, checking how well they are actually conserved is often a good indicator
of accuracy. However, there are problems in which the energy is well conserved while errors in
position and velocity are significant (we will show an example of such system in the last section).
When the propagator is written in a programming language that supports extended floating-point
precision (beyond double), it might be possible to generate a very accurate solution by using high-
order integrators and reducing the step-size significantly. But this option is not always available.
An alternative error metric consists in propagating the orbit forward in time and then backward,
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evaluating how close the final state is compared to its initial value. This technique might represent
the global error, although it depends on the time-reversibility properties of the integrator. There are
still no portable, robust, and standard methods for evaluating the accuracy of generic propagations.

This paper present a method to solve this particular problem using a compact algorithm. The
theoretical foundations are presented in the following sections, including fundamental concepts like
the manifold of solutions and K -separation. Then, the algorithm is summarized from a practical
perspective. The final section of the paper discusses the applicability of the method through a
number of examples.

THE KS TRANSFORMATION AS A HOPF MAP

Let r = (x, y, z)> be the position vector of a point in Cartesian space E3, projected in an inertial
frame I, and let x = (x, y, z, 0)> be its extension to R4. Kustaanheimo and Stiefel1 found a regu-
larization of the two-body problem introducing the new coordinates u = (u1, u2, u3, u4)>, defined in
the parametric space U4 embedded in R4. The KS transformation is defined explicitly as

x = K (u) = L(u) u, (1)

where L(u) is known as the KS matrix:

L(u) =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 .
The KS matrix is r-orthogonal, i.e.

L−1(u) =
1
r

L>(u). (2)

Every point u is KS-mapped to one single point in Cartesian space E3. These equations are a
particular case of the more general map proposed by Hopf.2

Regularizing the equations of orbital motion by means of the KS transformation requires the time
transformation due to Sundman:3

dt = r ds, (3)

where s is referred to as the fictitious time, and r = ||r||. Derivatives with respect to physical time
t will be denoted by a dot, ṙ, whereas derivatives with respect to fictitious time will be written r′.
The radial distance r relates to KS variables by means of

r = u2
1 + u2

2 + u2
3 + u2

4 = ||u||2. (4)

The KS transformation maps fibers on the 3-sphere of radius
√

r in U4 to points on the 2-sphere of
radius r in E3.

Hopf2 proved that the transformation from the 3-sphere to the 2-sphere maps circles to single
points, defining the structure S1 ↪→ S3 → S2. Equation (1) is invariant under the gauge transforma-
tion R : u 7→ w,

x = L(u) u = L(w) w. (5)

Vector w = (w1, w2, w3, w4)> takes the form:

w = R(ϑ; u) = R(ϑ) u, (6)
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where R(ϑ) is the matrix

R(ϑ) =


cosϑ 0 0 − sinϑ

0 cosϑ sinϑ 0
0 − sinϑ cosϑ 0

sinϑ 0 0 cosϑ

 . (7)

This matrix is orthogonal, and also
R>(ϑ) = R(−ϑ).

Being R(ϑ) orthogonal Eq. (6) can be inverted to provide

u = R−1(ϑ; w) = R(−ϑ) w. (8)

The transformation R preserves the radius r, i.e.

r = u · u = w · w.

Since the radius is invariant to the selection of the point in the fiber it follows that the physical time,
defined by Eq. (3), is R-invariant as well∗. The identity in Eq. (5) and the r-orthogonality of matrix
L furnish a useful relation:

w = L−1(w) L(u) u = R(ϑ) u =⇒ L>(w) L(u) = rR(ϑ).

Figure 1: Hopf link connecting two
different fibers in KS space, visualized
by means of the stereographic projec-
tion to E3

The angular variable ϑ parameterizes the Hopf fibration
in four-dimensional space. In fact, Eq. (6) defines explicitly
the fiber F: changing the value of ϑ defines different points
in U4 that are KS transformed to the same point in E3. This
yields the definition of fiber as the subset of all points in
four-dimensional space that are mapped into the same point
in E3 by means of the KS transformation,

F =
{
w(ϑ) ∈ U4

∣∣∣ x = K (w), ∀ϑ ∈ [0, 2π]
}
.

A different fiber transforms into a different point. Conse-
quently, two fibers cannot intersect because the intersection
point will then be transformed into the same point in E3 de-
spite belonging to two different fibers.6 The stereographic
projection of the fibers onto E3 reveals that two fibers in KS
space are connected by a Hopf link, as sketched in Fig. 1.

The velocity and the bilinear relation

Let u,w ∈ U4. The KS matrix satisfies the property

L(u) w = L(w) u ⇐⇒ `(u,w) = 0,
∗Alternative forms of the time transformation can be found in the literature, generalized as dt/ds = g(x, ẋ). We refer

to the work by Zare and Szebehely4 for a survey of transformations involving different powers of the radial distance, the
potential, the Lagrangian, or combinations of the relative separations for the case of N-body problems. The vectors x and
ẋ are R-invariant, so the uniqueness of the physical time is also guaranteed for more general transformations.5
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where `(u,w) denotes the bilinear relation

`(u,w) = u1w4 − u2w3 + u3w2 − u4w1.

Differentiating Eq. (1) with respect to fictitious time and taking into account the time transforma-
tion from Eq. (3) yields

ẋ =
2
r

L(u) u′, (9)

where ẋ = (vx, vy, vz, 0)> is the velocity vector extended to R4. Note that the fourth component is
zero, which means

`(u,u′) = 0.

Moreover, Stiefel and Scheifele6 proved that `(u,u′) = 0 is a first integral of orbital motion. Pro-
vided that the KS transformation is R-invariant, it follows that the bilinear relation holds for all
points in a given fiber,

`(w,w′) = `(u,u′) = 0. (10)

Let t(ϑ) ∈ U4 denote the vector that is tangent to a fiber F at w(ϑ). The direction of t can be
obtained by differentiating Eq. (6) with respect to ϑ. It reads

t = R∗(ϑ) u

where R∗(ϑ) = dR(ϑ)/dϑ is obtained by differentiating Eq. (7). Taking as an example ϑ = 0 yields
the components of the tangent vector t,

t = (−u4, u3,−u2, u1)> (11)

This unveils a geometric interpretation of the bilinear relation `(u, v) = 0: it can be understood as
an orthogonality condition, since

`(u, v) = 0 ⇐⇒ v · t = 0.

Two vectors u and v satisfy the bilinear relation `(u, v) = 0 if v is orthogonal to the fiber through u.
Provided that `(u,u′) = 0 holds naturally and it is an integral of motion it follows that the velocity
in KS space, u′, is always orthogonal to the fiber at u. The fiber bundle S1 ↪→ S3 → S2 shows that
the fibers constituting the 3-sphere are circles, corresponding to points on the 2-sphere. Indeed, the
tangent vector t(ϑ) is always perpendicular to the position vector w(ϑ),

w · t =
[
R(ϑ) u

]
·
[
R∗(ϑ) u

]
= u ·

{
R>(ϑ)

[
R∗(ϑ)u

]}
= 0

no matter the value of ϑ.

The inverse mapping

The inverse KS transformation K −1 : x 7→ u maps points to fibers. Introducing the auxiliary
vector v = (v1, v2, v3, v4)> the inverse mapping takes the form

v1 = R sin θ

v2 =
1

2R
(y sin θ − z cos θ)

v3 =
1

2R
(y cos θ + z sin θ)

v4 = −R cos θ.

(12)
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Here R2 = (r + |x|)/2. The angle θ is different from ϑ: the points on the fiber are parameterized by
θ, which is measured with respect to a certain axis; given two points u and w obtained by setting
θ = θ1 and θ2 in Eq. (12), respectively, they relate by virtue of Eq. (6). This equation then provides
the relation:

θ2 − θ1 = ϑ

meaning that the variable ϑ denotes the angular separation between points along the same fiber.
The value of θ depends on the position of the reference axis, whereas ϑ is independent from the
selection of the axis.

The point u is finally defined as

u = (v1, v2, v3, v4)> if x ≥ 0

u = (v2, v1, v4, v3)> if x < 0.
(13)

Two alternative expressions are considered for avoiding potential singularities. They differ in the
selection of the axes in KS space. From this result any point w0 in the initial fiber F0 can be obtained
from

w0(ϑ) = R(ϑ) u0 if x0 ≥ 0

w0(ϑ) = R(−ϑ) u0 if x0 < 0
(14)

so that x0 = L(w0)w0. The sign criterion complies with the different definitions of the axes in KS
space.

Figure 2: Stereographic projection to
R3 of the Hopf fibration correspond-
ing to a set of initial positions on the
three-dimensional sphere of radius r

The velocity in U4 is obtained by inverting Eq. (9), taking
into account the orthogonality relation in Eq. (2):

u′ =
1
2

L>(u) ẋ. (15)

The geometry of the inverse KS transformation can be
studied from Fig. 2. The gray sphere is three-dimensional
and of radius r. The black arc corresponds to a set of initial
conditions, r j. The white dot represents one particular po-
sition in E3, ri. The inverse KS transformation applied to ri

yields the fiber Fi. The fiber is represented by means of its
stereographic projection to R3. The black surface consists
of all the fibers F j that are KS mapped to the points r j. In
this figure it is possible to observe the Hopf link connecting
different fibers.

STABILITY IN KS SPACE

The classical concepts of stability from Lyapunov and Poincaré can be translated to KS language
by considering the topology of the transformation. First, we introduce an important theorem regard-
ing the geometry of the fibers. From this theorem the concept of the fundamental manifold arises
naturally.

The stability concepts here presented are not based in numerical analyses; previous studies about
the stability of KS transformation7, 8, 9 focus on the behavior of the numerical procedure. We aim
for a series of definitions that capture the physical behavior, which should be independent from the
formulation of the dynamics.
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A central theorem

Two fibers can never intersect, as discussed when formally defining a fiber. It is now possible to
advance on this statement and to formulate a fundamental property of the KS transformation:

Theorem 1: (Roa et al. 201610) The angular separation between two trajectories emanating from
F0, measured along every fiber, is constant. That is

w0 = R(ϑ0) u0 =⇒ w(s) = R(ϑ0) u(s)

for any value of ϑ0 and the fictitious time s. This is an intrinsic property of KS space and does not
depend on the dynamics of the system.

Proof: Consider two trajectories in KS space, u = u(s) and w = w(s), departing from the same fiber
F0. They relate by means of Eq. (6). In the most general case the angle ϑ can be described by a
function ϑ = ϑ(s) and initially it is ϑ(0) = ϑ0. The trajectories evolve according to

w(s) = R(ϑ; u(s)) = R(ϑ)u(s). (16)

Differentiating this equation with respect to fictitious time yields

w′(s) = R′(ϑ) u(s) + R(ϑ) u′(s). (17)

Equation (10) proved that the bilinear relation holds for any trajectory in KS space, meaning that
`(w,w′) = `(u,u′) = 0. This renders:

`(w,w′) = `
(
R(ϑ)u,R′(ϑ) u + R(ϑ) u′

)
= 0

after substituting Eqs. (16) and (17). Expanding the bilinear relation in the previous expression
shows that

`
(
R(ϑ)u,R′(ϑ) u + R(ϑ) u′

)
= r

dϑ
ds

+ `(u,u′) = 0.

Assuming that r > 0 and considering that `(u,u′) = 0 one gets

dϑ
ds

= 0 =⇒ ϑ(s) = ϑ0

so the angular separation along every fiber remains constant. We emphasize that no assumptions
about the dynamics have been made. �

A direct consequence of this result is the relation between the velocities along the trajectories
u(s) and w(s):

w′(s) = R(ϑ; u′(s)).

The fundamental manifold Γ

A trajectory in Cartesian space, understood as a continuum of points in E3, is represented by a
continuum of fibers in U4. Each fiber is KS transformed to a point of the trajectory. The fibers form
the fundamental manifold, Γ.
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Figure 3: Construction of the fundamental
manifold: the mapping gt : x0 7→ x(t) denotes
the integration of the trajectory from t0 to t,
and gs refers to the propagation using the fic-
titious time

Equation (14) defines the initial fiber F0, which
yields a whole family of solutions parameterized by
the angular variable ϑ. Every trajectory w(s) is con-
fined to the fundamental manifold. Thanks to Thm. 1
the manifold Γ can be constructed following a simple
procedure: first, a reference trajectory u(s) is propa-
gated from any point in F0; then, mapping the trans-
formation R over it renders a fiber Fi for each point
u(si) of the trajectory. The set ∪iFi defines Γ. Recall
that ⋂

i

Fi = ∅.

The fact that all trajectories emanating from F0 are
confined to Γ is what makes an arbitrary choice of θ
in Eq. (12) possible. The diagram in Fig. 3 depicts the construction of the fundamental manifold Γ.

Fixed points, limit cycles and attractors

Points in E3 transform into fibers in U4. Thus, a fixed point in Cartesian space, x0, translates into
a fixed fiber in KS space, F0. Asymptotically stable fixed fibers (to be defined formally in the next
section) attract the fundamental manifold of solutions, Γ→ F0. Asymptotic instability is equivalent
to the previous case under a time reversal.

Limit cycles are transformed to fundamental manifolds, referred to as limit fundamental mani-
folds Γ0. A fundamental manifold Γ originating in the basin of attraction of a limit fundamental
manifold will converge to it after sufficient time. For Γ → Γ0 convergence means that each fiber
in Γ approaches the corresponding fiber in Γ0. Correspondence between fibers is governed by the
t-synchronism.

In a more general sense, attractors in U4 are invariant sets of the flow. The point-to-fiber cor-
respondence connects attractors in E3 with attractors in KS space. The basin of attraction of an
attractive set Yu ⊂ U

4 is built from its definition in three dimensions. Let X ⊂ E3 be the basin of
attraction of Y . It can be transformed to KS space, X → Xu, thanks to

Xu = (R ◦K −1)(X) = R
(
K −1(X)

)
.

This construction transforms arbitrary sets in E3 to U4. The inverse KS transformation constitutes a
dimension raising mapping, so in general dim(Xu) = dim(X) + 1.

Relative dynamics and synchronism

The theories about the local stability of dynamical systems are based on the relative dynamics
between nearby trajectories. The concepts of stability formalize how the separation between two
(initially close) trajectories evolves in time. But the concept of time evolution requires a further dis-
cussion because of having introduced an alternative time variable via the Sundman transformation.

Keplerian motion is known to be Lyapunov unstable. Small differences in the semimajor axes of
two orbits result in a separation that grows in time because of having different periods. However,
Kepler’s problem transforms into a harmonic oscillator by means of the KS transformation, with
the fictitious time being equivalent to the eccentric anomaly. The resulting system is stable: for
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fixed values of the eccentric anomaly the separation between points in each orbit will be small,
because of the structural (or Poincaré) stability of the motion. These considerations are critical for
the numerical integration of the equations of motion. But in this paper we seek a theory of stability
in U4 expressed in the language of the physical time t, because of its physical and practical interest.
The conclusions about the stability of the system will be equivalent to those obtained in Cartesian
space.

The spectrum of the linearized form of Kepler’s problem written in Cartesian coordinates,

d2r
d t2 = −

r
r3

exhibits one eigenvalue with positive real part, λ =
√

2/r3. Lyapunov’s theory of linear stability
states that the system is unstable.

Under the action of the KS transformation Kepler’s problem transforms into

d2u
ds2 = −

h
2

u (18)

where h is minus the Keplerian energy. Although the linear analysis is not useful in this case,
selecting a candidate Lyapunov function V(u,u′) = h(u ·u)/4 + (u′ ·u′)/2 the stability of the system
is proved. In order to represent the Lyapunov instability of the motion with respect to time t the
Sundman transformation needs to be considered. Given two circular orbits of radii r1 and r2, the
time delay between both solutions reads

∆t = t2 − t1 = (r2 − r1)s.

The time delay grows with fictitious time and small values of r2−r1 do not guarantee that ∆t remains
small.

This phenomenon relates to the synchronism of the solutions.11, 12 Solutions to the system defined
in Eq. (18) are stable if they are synchronized in fictitious time, but unstable if they are synchronized
in physical time. We adopt this last form of synchronism for physical coherence.

Stability of the fundamental manifold

Lyapunov stability A trajectory r(t) in E3 is said to be Lyapunov stable if, for every small ε > 0,
there is a value δ > 0 such that for any other solution r∗(t) satisfying ||r(t0) − r∗(t0)|| < δ it is
||r(t) − r∗(t)|| < ε, with t > t0. In KS language trajectory translates into fundamental manifold. In
order to extend the definition of Lyapunov stability accordingly an adequate metric d to measure the
distance between manifolds is required.

Let Γ1 and Γ2 be two (distinct) fundamental manifolds. The fibers in Γ1 can never intersect the
fibers in Γ2. But both manifolds may share certain fibers, corresponding to the points of intersection
between the two resulting trajectories in Cartesian space. The distance between the manifolds at
t ≡ t(s1) = t(s2) is the distance between the corresponding fibers. Setting θ to a reference value θref
in Eq. (12) so that θ1 = θ2 ≡ θref , we introduce the metric:

d(t; Γ1,Γ2) =
1

2π

∫ 2π

0
||w1(s1;ϑ) − w2(s2;ϑ)|| dϑ (19)
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with d(t; Γ1,Γ2) ≡ d(F1,F2). It is measured by computing the distance between points in Γ1 and Γ2
with the same value of ϑ, and then integrating over the entire fiber. It is defined for given values of
physical time, and not fictitious time. The reason is that the goal of this section is to define a theory
of stability such that the fundamental manifold inherits the stability properties of the trajectory in
Cartesian space. This theory is based on the physics of the system, not affected by a reformulation
of the equations of motion.

Consider a fundamental manifold Γ, referred to a nominal trajectory r(t), and a second manifold
Γ∗ corresponding to a perturbed trajectory r∗(t). If the nominal trajectory is Lyapunov stable, then
for every εu > 0 there is a number δu > 0 such that

d(t0; Γ,Γ∗) < δu =⇒ d(t; Γ,Γ∗) < εu.

If the initial separation between the manifolds is small it will remain small according to the metric
defined in Eq. (19).

The nominal solution r(t) is said to be asymptotically stable if ||r(t)− r∗(t)|| → 0 for t → ∞. Sim-
ilarly, the fundamental manifold Γ will be asymptotically stable if d(t; Γ,Γ∗) → 0 for sufficiently
long times. The opposite behavior d(t; Γ,Γ∗) → ∞ corresponds to an asymptotically unstable fun-
damental manifold. It behaves as if it were asymptotically stable if the time is reversed.

Poincaré maps and orbital stability The notion of Poincaré (or orbital) stability is particularly
relevant when analyzing the fundamental manifold due to its geometric implications. Kepler’s prob-
lem is unstable in the sense of Lyapunov but it is orbitally stable: disregarding the time evolution of
the particles within their respective orbits, the separation between the orbits remains constant.

The definition of the Poincaré map in E3 involves a 2-dimensional section Σ that is transversal to
the flow. Denoting by p1, p2,. . . the successive intersections of a periodic orbit with Σ, the Poincaré
map P renders

P(pn) = pn+1.

The generalization of the Poincaré section to KS space K : Σ→ Σu results in a subspace embedded
inU4. We showed that the trajectories intersect the fibers at right angles, provided that the velocity u′
is orthogonal to the vector tangent to the fiber. Thus, every fiber defines a section that is transversal
to the flow. The transversality condition for Σ translates into the section containing the fiber at u.

The Poincaré section Σu can be constructed by combining the set of fibers that are KS transformed
to points in Σ. Let n = (nx, ny, nz)> be the unit vector normal to Σ in E3, projected onto an inertial
frame. The Poincaré section takes the form

Σ ≡ nx(x − x0) + ny(y − y0) + nz(z − z0) = 0 (20)

where (x0, y0, z0) are the coordinates of the first intersection point. Equation (20) can be written
in parametric form as Σ(x(η, ξ), y(η, ξ), z(η, ξ)), with η and ξ two free parameters. The extended
Poincaré section Σu is obtained by transforming points on Σ to KS space and then mapping the
fibration R:

Σu = (R ◦K −1)(Σ).

The choice of the Poincaré section Σ is not unique, and therefore the construction of Σu is not unique
either. The resulting Poincaré section Σu is a subspace of dimension three embedded in U4. Indeed,
the transformation (R ◦K −1)(Σ) provides:

Σ 7→ Σu(u1(η, ξ, ϑ), u2(η, ξ, ϑ), u3(η, ξ, ϑ), u4(η, ξ, ϑ))
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meaning that points in Σu are fixed by three parameters, (η, ξ, ϑ). The dimension is raised by (R ◦
K −1).

The intersection between a given fundamental manifold and the Poincaré section Σu results in a
fiber,

Γ ∩ Σu = F.

Successive intersections can be denoted F1, F2,. . . . The Poincaré map in U4, P : Σu → Σu, is

P(Fn) = Fn+1.

Every point in a fiber intersects Σu simultaneously. Due to the R-invariance of the Sundman trans-
formation the time period between crossings is the same for every trajectory connecting Fn and
Fn+1.

Let Γ denote a fundamental manifold representing a nominal periodic orbit, and let Γ∗ be a per-
turbed solution. They differ in the conditions at the first Σ-crossing, F1 and F∗1 respectively. The
manifold Γ is said to be Poincaré (or orbitally) stable if

d(F∗1,F1) < δu =⇒ d(Pn(F∗1),F1) < εu.

If the separation between the fibers at the first crossing is small, the separation will remain small
after n crossings.

ORDER AND CHAOS

In the previous section we generalized the key concepts of dynamical stability to KS space. The
approach we followed aims for a theory that captures the physical properties of the system, instead
of focusing on its purely numerical conditioning. The next step is the analysis of chaos in U4.

Chaotic systems are extremely sensitive to numerical errors due to the strong divergence of the
integral flow. This is specially important in the vicinity of singularities, and it is precisely here where
KS regularization exhibits all its potential. This section focuses on characterizing the exponential
divergence of trajectories in U4 due to highly unstable dynamics.

By definition the fundamental manifold is mapped to a trajectory in E3. The equations of motion
in U4 are no more than a reformulation of a dynamical system originally written in E3. For suf-
ficiently smooth perturbations the Picard-Lindelöf theorem ensures the uniqueness of the solution.
Thus, the corresponding fundamental manifold is also unique and its KS transform defines only one
trajectory. This means that any trajectory in the fundamental manifold is mapped to the same exact
trajectory in E3, no matter the position within the initial fiber. An observer in three-dimensional
space, unaware of the extra degree of freedom introduced by the gauge R, will always perceive the
same trajectory no matter the values of ϑ.

The K -separation

In order to integrate the equations of motion numerically in U4 the initial values of u0 and u′0
need to be fixed. This means choosing a point in the fiber F0. Since all the points in F0 are KS
transformed to the same exact state vector in E3, the selection of the point is typically arbitrary.
But for an observer in U4 different values of ϑ yield different initial conditions, and therefore the
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initial value problem to be integrated may behave differently. Ideally∗ all trajectories emanating
from F0 remain in the same fundamental manifold, that is unique. However, numerical errors
leading to the exponential divergence of the trajectories can cause the trajectories to depart from
the fundamental manifold. In other words, after sufficient time two trajectories originating from the
same fiber F0, w0 = R(ϑ; u0), will no longer define the same fiber F(s), w(s) , R(ϑ; u(s)). In this
case Thm. 1 will be violated. Multiple fundamental manifolds will appear, obtained by mapping
the transformation R over each of the trajectories. The observer in E3 will see a collection of
trajectories that depart from the same exact state vector and they separate in time, as if the problem
had a random component. This behavior can only be understood in four dimensions.

These topological phenomena yield a natural way of measuring the error growth in KS space
without the need of a precise solution. Let u(s) be a reference trajectory in U4, and let w(s) be
a second trajectory defined by w0 = R(ϑ; u0). It is possible to build the fundamental manifold
Γ from the solution u(s). The second solution is expected to be w∗(s) = R(ϑ; u(s)) by virtue of
Thm. 1. When numerical errors are present w(s) and its expected value w∗(s) (the projection of the
fundamental manifold) may not coincide. Note that w(s) = w∗(s) ensures the uniqueness of the
solution, but says nothing about its accuracy. The separation between w(s) and its projection on
Γ is an indicator of the breakdown of the topological structure supporting the KS transformation,
meaning that the solutions can no longer be trusted.

Motivated by this discussion we introduce the concept of the K -separation,

dK (s) = ||w(s) − w∗(s)|| = ||w(s) −R(ϑ; u∗(s))|| (21)

defined as the Euclidean distance between an integrated trajectory and its projection on the manifold
of solutions. Monitoring the growth of the K -separation is a way of quantifying the error growth
of the integration. In the context of N-body simulations, Quinlan and Tremaine13 discussed how the
separation between nearby trajectories evolves: the divergence is exponential in the linear regime
when the separation is small, but the growth rate is reduced when the separation is large. At this
point the separation might be comparable to the interparticle distance. The K -separation will grow
exponentially at first (for dK � 1) until it is no longer small (dK ∼ O(1)), and then its growth slows
down. Locating the transition point is equivalent to finding the time scale tcr in which the solution
in KS space can no longer be trusted: for t < tcr the topological structure of U4 is preserved, but for
t > tcr the uniqueness of the manifold of solutions Γ is not guaranteed.

For t < tcr the R-invariance of the Sundman transformation holds. The time for all the points in
a fiber coincides. Thus, tcr and scr are interchangeable: at t < tcr it is also s < scr. The behavior of
the solutions can be equally analyzed in terms of the physical or the fictitious time. In practice the
K -separation is evaluated following the steps in the second section of the paper.

Topological stability

The uniqueness of Γ can be understood as topological stability. KS space is said to be topo-
logically stable if all the trajectories emanating from the same fiber define a unique manifold of
solutions, and therefore they are all KS-transformed to the same trajectory in E3. For an observer

∗Due to the limited precision of floating point arithmetic, even the fact that all points generated with Eq. (14) and
varying ϑ will be KS-transformed to the same exact point in E3 should be questioned. The loss of accuracy in the
computation of the initial conditions in U4 will eventually introduce errors of random nature. As a result, Eq. (14)
provides points that are not exactly in the true fiber. Although the separation is small (of the order of the round-off error)
and negligible in most applications, it may have an impact on the numerical integration of chaotic systems.
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in E3 a topologically unstable system seems non-deterministic, with solutions departing from the
same initial conditions but separating in time with no apparent reason.

A system is topologically stable in the interval t < tcr. The trajectories diverge exponentially,

dK (t)/dK (0) ∼ eγtt or dK (s)/dK (0) ∼ eγs s.

Here γ is equivalent to a Lyapunov exponent. For t > tcr this equation no longer models the growth
of the K -separation and the system is topologically unstable. Simulations over the transition time
tcr integrated in U4 can no longer be trusted. Depending on the integrator, the integration tolerance,
the floating-point arithmetic, the compiler, etc. the values of tcr for a given problem might change.
Thus, topological stability is a property of a certain propagation, which requires all the previous
factors to be defined.

The validity of the solution for an integration over the critical time tcr is not guaranteed. When
tcr < tesc (with tesc denoting the escape time) not even the value of tesc can be estimated accurately.
In such a case solutions initialized at different points in the fiber may yield different escape times.

The method presented in this section provides an estimate of the interval in which the propagation
is topologically stable. The exponent γ depends on the integration scheme and the dynamics, but
it is not strongly affected by the integration tolerance. An estimate of the value of γ provides an
estimate of the critical time for a given integration tolerance ε. Assuming dK (tcr) ∼ 1:

tcr ∼ −
1
γt

log ε (22)

Conversely, if the simulation needs to be carried out up to a given t f , the required integration toler-
ance is approximately

ε ∼ e−γtt f (23)

This simple criterion proves useful for tuning and evaluating the numerical integration. In the fol-
lowing examples of application the values of γt are estimated by finding the slope of the exponential
growth of the K -separation in logarithmic scale. Although more rigorous algorithms could be de-
veloped, this approximation provides a good estimate of transition time between regimes.

THE ALGORITHM

From a practical point of view, the main concept behind topological stability is the K -separation,
dK . This separation relates to how well the structure supporting the KS transformation is preserved.
In a nutshell, large K -separations are caused by large numerical errors. As we will prove in the
next section of the paper, it is a good indicator of the global numerical error. It is computed as
follows:

1. Transform the initial conditions r0 and v0 to KS coordinates (u0 and u′0) using Eqs. (12), (13)
and (15). Set θ to an arbitrary value θ1, for example θ1 = 0.

2. Propagate the orbit in KS coordinates u(s) starting from u0 and u′0.

3. Repeat step 1 to generate a second set of initial conditions in KS space, (w0,w′0), by setting
θ = θ2 in Eq. (12). Make θ2 , θ1 and not too close to each other, e.g. θ2 = π/2.

4. Propagate the orbit w(s) from w0 and w′0.
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5. The K -separation at each step s is simply

dK (s) = ||w(s) − R(ϑ)u(s)||,

with ϑ = θ2 − θ1. Matrix R is defined in Eq. (7).

The problem is typically normalized so the initial radius equals one. Therefore, dK actually
relates to the relative error. At first it will be comparable to the machine zero, and it will grow in
time as errors accumulate. When it becomes of order one it means that the magnitude of the errors
are comparable to the characteristic size of the orbit.

QUANTIFYING NUMERICAL ERRORS

The present section shows how monitoring topological stability is useful for quantifying global
errors. Four examples will be analyzed:

1. A geocentric orbit strongly perturbed by lunar close-encounters.

2. An orbiter in the Jovian system perturbed by Io, Europa, Ganymede and Callisto.

3. The Pythagorean three-body problem.

4. A symmetric configuration of the 8-body problem.

Problems 3 and 4 will be propagated using Heggie-Mikkola’s regularization of the N-body prob-
lem based on the KS transformation.14, 15

Problem 1: Resonant encounters with the Moon

Problem 1 models the orbit of a particle perturbed by a realistic force model. First, the gravita-
tional attraction of the Moon, using the DE431 ephemeris solution. Second, atmospheric drag. The
atmospheric density is approximated by an exponential model, with CD = 2, and A/m = 0.05 m2/kg.
Third, solar radiation pressure (CR = 1.2) accounting for seasonal variations. Fourth, a non-uniform
terrestrial gravity field given by a 10 × 10 grid of harmonics from the GGM03S model. The oscu-
lating elements at the initial epoch can be found in Table 1.

a [km] e i [◦] ω [◦] Ω [◦] M0 [◦]

340000 0.9373 3.1967 314.0441 311.5561 6.1920

Table 1: Definition of the test orbit in the ICRF/J2000 frame with the Earth mean equator at epoch as
the reference plane (JD 2456900)

The high eccentricity of the orbit brings its apoapsis very close to the orbit of the Moon, while
keeping periapsis low so atmospheric drag and high-order terms of the gravity field still perturb
the orbit significantly. Moreover, the relative phasing with respect to the Moon is such that the
particle suffers from several close encounters with the Moon. These encounters modify the energy
and inclination of the orbit significantly in the 4-year time span that we considered (∼65 revs). As
a result, the orbit is extremely sensitive to numerical errors. Figure 4 shows the orbit.
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Figure 4: Geocentric orbit strongly perturbed by several close encounters with the Moon

The error in position, plotted in Fig. 5, is measured by comparing the solution with a very ac-
curate propagation using quadruple-precision floating-point arithmetic. In order to generate the
reference solution, the tolerances for the integrator are set to 10−21, five orders of magnitude below
the machine zero in double precision. In this case, the orbit is propagated using LSODAR. The
error grows exponentially and becomes comparable to the initial semimajor axis of the orbit after
roughly 3.5 years. Estimating this e-folding time is critical because results beyond this point are
shadowed by numerical errors. In some applications dealing with chaotic systems the results are
only meant to provide statistical insight into the solution, and admit propagations over the e-folding
time. However, in our case we aim to represent the orbit of the particle as accurately as possible,
and errors comparable to the characteristic size of the orbit are not admissible.

0 1 2 3 4
10

−15

10
−10

10
−5

10
0

Time [yrs]

P
o

s
. 

e
rr

o
r 

/ a
0

o(1)

Figure 5: Error in position for Problem 1

Although running the propagator in quadruple-precision floating-point arithmetic might provide
an accurate measure of the errors, it is certainly not a practical technique: some Fortran compil-
ers support extended precision, but other languages such as Matlab or Python do not support this
arithmetic. The new method presented in this paper works in double precision, and it is able to cap-

14



ture the evolution of the error and the e-folding time accurately; the evolution of the K -separation
displayed in Fig. 6 also estimates that after 3.5 years the errors will be comparable to the size of
the orbit. Moreover, the qualitative evolution of the K -separation is a good representation of how
errors evolve in Fig. 5.
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Figure 6: K -separation in the integration of the geocentric orbit

Problem 2: Jupiter system

Inspired by the Europa mission, the second problem considers a spacecraft orbiting around Jupiter
and subject to the attraction from Io, Europa, Ganymede, and Callisto. The orbits of the moons are
assumed circular and coplanar. The initial orbit of the spacecraft is almost circular (e = 0.08), with
a semimajor axis of approximately 613,000 km. The inclination relative to the orbital plane of the
moons is just 0.5◦.

Figure 7 shows how the semimajor axis and eccentricity evolve in time. This particular orbit
experiences several close encounters with Europa, responsible for the sequence of apoapsis raising
and lowering events. In particular, the apoapsis of the orbit changes by almost 30% of the initial
radius, due to significant changes in the eccentricity of the orbit. The orbit of the spacecraft is
propagated for 4 years, which corresponds to more than 450 orbits, using a Dormand-Prince 5(4)
integrator.

The evolution of the K -separation (Fig. 8) shows that, for the current integration setup, 1.25 years
into the propagation the numerical error dominates the solution. Results beyond this point cannot
be trusted if the exact path of the spacecraft is to be tracked.

Problem 3: Pythagorean three-body problem

Problem 3 corresponds to a classical problem in N-body simulations: the Pythagorean three-
body problem. Three bodies with masses m1 = 3, m2 = 4, and m3 = 5 form a triangle with vertices
r1 = (1, 3, 0), r2 = (−2,−1, 0), and r3 = (1,−1, 0), starting with zero velocity. This problem is
an interesting reference that has been studied widely in the past.16 The solution, integrated using
the Bulirsch-Stoer extrapolation scheme, is presented in Fig. 9. Two of the particles (1,3) end up
forming a binary that escape toward the bottom-left corner, whereas particle 2 is ejected toward the
top-right corner.
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Figure 7: Evolution of the orbital elements of the Jupiter orbiter
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Figure 8: K -separation for the Jupiter orbiter
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Time = 8 Time = 15 Time = 22 Time = 30 Time = 39

Time = 46 Time = 54 Time = 60 Time = 65 Time = 70

Figure 9: Solution to the Pythagorean three-body problem

Encounters are not too strong in this case, and the integration is not problematic. The K -
separation, presented in Fig. 10, shows that the integration time (t = 70) is well below the e-folding
time; the errors by the end of the integration are small compared to the size of the orbit. Therefore,
the current integration setup adequately captures the dynamics beyond the escape time.
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Figure 10: K -separation for the Pythagorean three-body problem

8-body problem

The fourth problem consists in eight bodies of unit mass that initially form a cube of side 2. They
have velocities equal to one, directed in counter-clockwise direction. Figure 11 shows the solution
obtained by initializing the problem in KS space using θ = 0, and Fig. 12 depicts the solution
obtained with θ = 270◦.
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Time = 2 Time = 5 Time = 8 Time = 11 Time = 14

Time = 17 Time = 20 Time = 23 Time = 26 Time = 30

Figure 11: Solution to the 8-body problem with θ = 0

Time = 2 Time = 5 Time = 8 Time = 11 Time = 14

Time = 17 Time = 20 Time = 23 Time = 26 Time = 30

Figure 12: Solution to the 8-body problem with θ = 270◦

At t = 17 the difference between the solutions is noticeable. This is approximately the e-folding
time predicted by the evolution of the K -separation in Fig. 13. The symmetry of the problem is lost,
as numerical errors shadow the true solution. The particles shown in Fig. 11 escape at approximately
t ∼ 25, whereas in Fig. 12 the system remains bounded.
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Figure 13: K -separation for the 8-body problem

Interestingly, the energy is conserved down to 10−10E0 during almost the entire integration. The
error grows at first after the a sequence of encounters, and then it remains stable at the reported
level. The integrator preserves the energy well, although the solutions are not accurate enough at
the end of the integration. Monitoring the change in the energy fails to predict the actual evolution
of the global error, whereas the new method captures it. This is a clear example of the fact that the
energy being conserved is a necessary but not sufficient condition for solutions to be accurate.
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Figure 14: Conservation of the energy

CONCLUSIONS

The extra degree of freedom introduced by the Kustaanheimo-Stiefel transformation imposes
specific constraints on the numerical propagation of an orbit. But numerical errors might violate
such constraints, destroying the topological support of KS regularization. As a result, and after
translating classical concepts of stability to KS language, it follows a new metric for assessing
numerical integration errors.

The method can be used for evaluating whether the current integration setup is well tuned for
solving the problem, or if the solution is not accurate enough. Similarly, it can be used to estimate
what kind of integration tolerance (or step size) should be used for a particular problem.
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