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Disk-Gap-Band (DGB) Parachute Heritage

MSL (2012)

-

Viking BLDT Test

i\

MER (2004).

MER Drop Test—

Developed in the 60s & 70s
for Viking

— High Altitude Testing
— Wind Tunnel Testing
— Low Altitude Drop

Successfully used on 5
Mars missions

— Leveraged Viking
development




The ASPIRE Project

 The Advanced Supersonic Parachute Inflation Research Experiments Project
was established to study the deployment, inflation and performance of DGBs in
supersonic, low-density conditions

« DGBs to be tested in a series of sounding rocket flights out of Wallops Flight
Facility (WFF) starting summer 2017
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ASPIRE Parachute & Modeling Challenges

« Dy=21.5m DGB configuration: similar to MSL & Mars 2020 (planned)
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« Parachute system models are necessary to:

Predict opening parachute loads

Evaluate vehicle trajectory for targeting, range safety, recovery
Evaluate loads & accelerations imposed by the parachute on payload
Guide sensor selection & placement

Examine differences between parachutes tested in slender body wakes (test) and blunt
body wakes (at Mars flight)

« Majority of past supersonic DGB tests have been in blunt body wakes

Only four successful supersonic slender body tests
All featured short suspension lines (1.0 x D)
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Modeling Approach

Used the MSL DGB model, which successfully predicted at Mars
performance, as a baseline (Cruz et al, AIAA 2013-1276)

Leveraged results from historical supersonic flight test, wind tunnel tests &
Mars entries

— Eight flight tests: four blunt bodies, four slender bodies

— Reconstructed performance at Mars: Phoenix, MSL

— Wind tunnel test data from ten separate campaigns

CFD simulations of the wakes behind blunt and slender bodies

— Parallel unstructured implicit Navier-Stokes solver (US3D) w/ Detached Eddy Simulations
(DES) & low dissipation fluxes

— Flow conditions match ASPIRE deployment:

Atmosphere | Altitude Mach Number | Dynamic Pressure

Dry air 41 km above sea level 1.75 538 Pa
— Simulations conducted both with & without canopy in wake

— Examined time-averaged & fluctuating properties at the location of the parachute

MSL
geometry:

ASPIRE
geometry:
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Supersonic Inflation

Past supersonic DGB inflations characterized by inflation distance (L)
— Distance traveled by the payload during inflation
— Related to the volume of gas (air, CO,) that is ingested by the parachute
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The inflation distance depends on: Di = a ( Pe >
— The size of the parachute (D) 0
— The density of the inflation gas (behind the bow shock — atmosphere dependent)
— «als a canopy-specific parameter accounting for: volume, effective inlet area, etc

Previous inflations at Mars fall between 4.5 < o < 5.2

For inflations at Earth:
— BLDT inflations:; 8 < a < 10

— Slender body inflations were slower in general, but may be influenced by Lg

(constrained inlet area) or canopy loading (mg/CyS, -- departure from infinite mass)
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ASPIRE Inflation Model

« During inflation the force exerted by the parachute is given by:

¢ 4
Fp(t) = ¢CpSoCx <t- f)

— Cy =1.407 is the opening load factor
t.¢ IS the inflation time

— (xCpSy isthe steady state drag of the parachute at deployment Mach

Identical to MSL
model

« Inflation time t,; is determined from the inflation distance:

L:a<pC>DO
Poo
— Assume 5 < a<9

— Time to travel L (ie t; ) is dependent on the force exerted by parachute, which is in turn
dependent on t;

— Initially assume tins = Do/Vins Wiinflation velocity V;; = 30 m/s (MSL)
— lterative process to determine t;

* Currently, nominal simulations yield: t, . = 0.6 s.
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Drag Performance

Blunt bodies
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©  Phoenix, MSL (Lg = 1.7 D)
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MSL model nominal

Slender bodies
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All data correspond to flight tests from PEPP,
SHAPE, SPED programs (Ls = 1.0 D)

- - = MSL model high/low

* MSL model agreement w/all tests of DGBs w/Lg = 1.7 D, behind blunt bodies
« Cp of parachutes with Lg = 1.0 D, is lower, regardless of leading body shape

* No tests of DGBs w/Lg = 1.7 D, behind slender bodies
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DGB Wind Tunnel Tests

« Asingle DGB of MSL-like configuration was wind-tunnel tested behind a

slender body by Viking in '72

« Multiple tests of similar DGBs behind blunt bodies for comparison
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Viking DGB wi/o forebody
Viking DGB behind entry
vehicle, lander

MSL DGB behind backshell
(two fabric permeabilities)

MSL DGB behind entry
vehicle

MSL model nominal
MSL model high/low

+ C, of DGB behind slender sting 5-11% higher than for DGBs behind blunt

bodies

» Very small transonic drag crisis for slender body case
* Wind tunnel results approx. 15% lower than Cy measured in flight
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Slender & Blunt Body Wakes

Time-averaged wake of the leading body at the approximate location of the
parachute skirt (40 m behind nose)

Blunt body (MSL config) Slender body (ASPIRE)
Inflated q(x,y, 2)
parachute Joo
inlet area : /
i g deficit region
E E << parachute
” inlet area
Large wake
footprint

0 10
z[m]

-10

0 10
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Integrated q over parachute inlet area / / .
the freestream equivalent (¢goo7D,/4)

With parachute aligned with the centerline of the leading body:
— Blunt body: 92 % of freestream

— Slender body: > 99% of freestream

Mean parachute "“pull angle” for MSL DGB was approx. 4 deg

Suggests pull angle should make little difference to ASPIRE DGB drag
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Temporal Wake Unsteadiness

« Time-varying wake characteristics of the wake:
— 40 m downstream of vehicle nose
— 3 probe locations, at increasing distance from the centerline:

Blunt body (MSL config) Slender body (ASPIRE)

q(t)/qoo

-10 0
All slendef body*™
measurements within
circle

« Near vehicle centerline, blunt body q oscillates between 50% and 90% of
freestream

* For slender body, oscillations remain within 15% of freestream
« Expect larger variations in C, for DGBs in blunt body wakes
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ASPIRE Drag Model

« MSL drag model updated based on historical tests & CFD results:

Subsonic mean &
upper bound increased
5%. Reflects

differences between
slender & blunt body
wakes in wind tunnel

Subsonic & supersonic/
lower bound

unchanged

— MSL nominal

Additional margin in upper bound @ ASPIRE

deployment Mach.

MSL model slightly
overestimates
supersonic Cp, .
Supersonic upper
bound mostly
unchanged

/

\ Supersonic mean
increased 5%. Reflects
between slender &
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DGB Static Aerodynamics

* Most wind tunnel tests focus on C only

« The NESC & the LDSD project conducted a test of the MSL DGB in 2014:
— Similar to test conducted by MER in 2001 (Cruz et al, AIAA 2003-2129)
— 6.7% scale models of MSL DGB & backshell

From Cruz et al 2003

— Determined static force & moment coefficients (C+, Cy, C,,o) as a function of angle of attack
— DGBs tested in the wake of MSL backshell & without the backshell
— Conducted at Langley’s Transonic Dynamics Tunnel (TDT):

* 0.1<M<0.5

» Static pressure: 0.05 atm to 1 atm

— DGB models w/two different fabric permeabilities: effective permeability of ASPIRE
DGBs at test conditions expected to lie between “low” and ”high” permeability fabric
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Static Aerodynamics Model
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» All aero coefficients dispersed uniformly within two boundaries
« ASPIRE C; model bounds both “low” and “high” permeability models

— Results suggest C; may be higher at lower (ASPIRE-relevant) densities

C,,o model trim angle of attack range spans test results
— Negative pitching moment is stabilizing
— “High” permeability results provide the most benign stability characteristics
— "Low” permeability models exhibited second unstable trim angle of attack

— Results suggest models may be less stable at (ASPIRE-relevant) densities
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Summary and Ongoing Work

« Developed models for the deployment, inflation, and performance of the
ASPIRE DGBs

* Deployed supersonically in the wake of a slender sounding rocket payload

« Models based on historical tests & CFD simulations of the wakes behind
blunt and slender bodies

« Currently developing simulations of a model DGB in the leading body
wake:

— ASPIRE & MSL geometries
— Rigid, impermeable canopy
— Preliminary results: canopy
bow shock significantly more
affected by wake for blunt
body geometry

» Future work: consider simulations w/ non-zero parachute pull angle
« Evaluate and update parachute DGB models following first flight
« Examine differences between ASPIRE test & at Mars conditions
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