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DSAC Technology Demonstration Mission

DSAC Demonstration Unit

Mercury UV Lamp Testing

Multi-pole
Trap

Quadrupole
Trap

Develop advanced prototype (‘Demo Unit’) mercury-ion atomic clock for navigation/science in deep space
and Earth
«  Perform year-long demonstration in space beginning Sept 2017+ — advancing to TRL 7

«  Focus on maturing the new technology — ion trap and optical systems — other system components (i.e.
payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule

« Identify pathways to ‘spin’ the design of a future operational unit (TRL 7 — 9) to be smaller, more
power efficient — facilitated by a detailed report written for the next DSAC manager/engineers
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Broad Benefits for Enhanced Exploration &
National Security

Enable routine use of 1-Way tracking - more
flexible/robust mission ops than with 2-Way tracking

« Ex.: 3X more radio science data during Europa
flybys without constraining other science

Fundamental to enabling real-time, on-board deep
space radio navigation

*  Ex.: Trajectory knowledge to 10’s of meters at entry
to Mars’ atmosphere

Enable use of existing DSN Ka-band downlink tracking
capability — improve data accuracy by 10X

 Ex.: Determine Mars’long period gravity and
orientation to GRACE-quality using one spacecraft

National security resource to GPS, protected command
and control, and other applications

* Ex.: Improves upon existing GPS clock
performance by 50 times or more
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DSAC Benefits the DSN and Mission Operations

« One-way tracking improves existing tracking
and onboard timing capabilities

 Increase tracking data quantity via efficient
use of uplink or downlink signals

 Utilize multiple spacecraft per aperture
downlink tracking — 2-3x more tracking for
Mars assets

« Enable use of uplink tracking with low
gain antennas on s/c

» 3x more radio science and
navigation data during Europa flybys

» Continuous tracking of all Mars s/c
carrying DSAC

« Eliminate need for three-way tracking at
distant locations — removes multiple Earth
antenna geometry and availability
constraints

 Increase bandwidth for downlink
communications — use uplink for ranging
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DSAC Enables a Scalable DSN Tracking Architecture

Today’s 2-Way Navigation
One antenna supports one s/c

Tomorrow’s 1-Way Navigation w/ DSAC Onboard
One antenna supports multiple s/c simultaneously
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DSAC Enhances Science and
Enables Robust Onboard Navigation

Real time, onboard deep space radio
navigation system with DSAC yields

» Trajectory knowledge to 10s of meters at
Mars atmosphere entry

* Enhanced navigation operations such as
SEP spiraling into a low-altitude orbit

 Fault tolerant, robust navigation solutions
required for safe human exploration
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DSAC enables use of existing DSN Ka-band downlink
tracking capability

e Ka-band data an order of magnitude more accurate than
X-band data

e Determine Mars long-wavelength, time variable gravity
effects to GRACE-quality with single s/c

e Improve ring/atmosphere measurements by 100 x
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GPS and Other DOD Applications

« DSAC short and long term performance needed for future GPS uses (FAA & autonomy) — DSAC
short term performance is 10X better than RAFS, and long term performance 50X better

«  DSAC performance sufficient for future GPS Il URE goals (improved clocks needed to shorten a
‘tent pole’ contributing to URE — ephemeris error is the other 'tentpole’)

« DSAC performance (considering no intrinsic drift) well suited for autonomous operations needed for
secure command and control satellite systems (follow-on AEHF) and other government agencies
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Technology & Operation
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lon Clock Operation

Short term (1 — 10 sec) stability depends on the Local
Oscillator (DSAC selected USO 2e-13 at 1 second)

Longer term stability (> 10 sec) determined by the
“atomic resonator” (lon Trap & Light System)

Key Features for Reliable, Long-Life Use in Space

No lasers, cryogenics, microwave cavity, light shift,
consumables

Low sensitivity to changing temperatures, magnetics,
voltages

Radiation tolerant at levels similar to GPS Rb Clocks
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Stabilized clock
frequency output

lon Clock Technology Highlights

State selection of 106-107 199Hg* electric-field
contained (no wall collisions) ions via optical pumping
from 202Hg*

High Q microwave line allows precision measurement
of clock transition at 40,507,347,996.8 Hz using
DSAC/USO system
5x 10713

VT
lon shuttling from quadrupole (QP) to multipole (MP)
trap to best isolate from disturbances - QP only
implementation offers major simplification

SNR X Q < & A.D.< 3x10715

lons are in an uncooled Neon buffer-gas
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Payload Integration & Test on Flight Hardware

DSAC Demo Unit (DU)

Atomic Resonator (JPL)

V: 285 x 265 x 228 mm

M: 16 kg, Physics Pkg — 6.6 kg
P: 45 W, Physics Pkg — 17 W

GPS Receiver
Validation System (JPL-Moog)

Ultra-Stable
Oscillator (USO)

Local Oscillator (FEI)

Demo Unit designed for prototyping flexibility — room to optimize mass, power, and volume.
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Demo Unit Measured Stability (Maser Input)
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Model-based simulated on-orbit performance
of DSAC in QP mode
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« DSAC is predicted to have an AD ~ 3e-15 with expected orbital thermal and magnetic variations
+  GPS systematic errors (predicted to be ~2.2e-15) raises this to ~ 3.7e-15 (via rss’ing)

« Using 14 days of data (nominal operational cadence), yields an equivalent 1-sigma upper
confidence limit of ~ 4.1e-15

On-orbit performance expected to be verified at < 5.e-15 at one-day
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DSAC Compared to Other Space Clocks
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* Anticipated Allan Deviation (including drift) of < 3e-15 at one-day will outperform all existing space
atomic frequency standards

* Mass and power of DSAC Demo Unit competitive with existing atomic frequency standards — future
version could be < 10 kg and < 30 W with modest investment

DSAC is an ideal technology for infusion into deep space exploration and national security systems
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Ride Story

Surrey OTB
Based on SSTL-150 Bus

COSMIC-2 (6 S/C)
(Surrey UK Prime)
(JPL Payload)

Surrey OTB
w/DSAC

DSAC Payload /

_Clock, USO, GPSR *

Surrey-Provided

NASA — USAF Payloads (6)
Quid Pro Quo
“Ride for Payloads”
SpaceX Falcon Heavy USAF
USAF Contract STP-2 “SERB” Payloads (2)

Flight Services Agreement in Place (S/C Host), STP-2 MOU Signed (LV), Ground Stations AF/JSC ...
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Mission Architecture and Timeline

Surrey OTB Checkout (7 Weeks) DSAC Payload Checkout (1 Month)
* DSAC Payload Host % Startup and configure DSAC
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Launch
USAF STP-2
(Falcon Heavy)

GPS
Satellites

Lifetime Monitoring (5 months)
* DSAC health via telemetry
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ominal Mission Ops (6 Months)
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* No GPS data processing / * Collect GPS phase & range data
P / * Collect DSAC telemetry
A » Validate clock instability < 2 ns

@ one-day (< 0.3 ns goal)
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DSAC currently being integrated with OTB. Launch Sept 2017+ for one-year demonstration
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