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 Cryogenic temperature piezoelectric
materials

* Piezoelectric driven devices

Sample conveyer

Linear inch-worm motors

Rotary motors

Piezoelectric hammer drills
Piezoelectric rotary hammer drills
Piezoelectric sonar

Piezoelectric acoustic communication

« Other NDEAA developments
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Piezoelectric transducers applicable at
cryogenic temperatures

» Conventional piezoelectric materials, represented by
PZT, lose most of their piezoelectric activity at
cryogenic temperatures.

» For example, the piezoelectric strain coefficient of
soft PZT decreases from 760 pm/V (picometer per
voltage) to 220 pm/V when the operating
temperature decreases from 300K to 30K.
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« Studies of relaxor-ferroeletric based single crystals
have revealed their extremely high piezoelectric
coefficient at cryogenic temperatures, e.g., dg, of
single crystal piezoelectrics (PMN-PT or PZN-PT)
at 30 K is almost equal to d;; of PZT-5A at room
temperature, indicating great promise for cryogenic
applications.

» This high piezoelectric coefficient implies that
similar acoustic sources for a transducer can be
achieved by replacing conventional PZT material

with relaxor-ferroelectric single crystal at cryogenic
temperatures.
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Rotary motors

Cryovac testing of the developed (traveling wave) piezoelectric motor
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Temperature cyclic test

The developed motor survived a total exposure of 336 hours at cryovac test conditions of
65 hour at —80°C and 25-mTorr plus 271 hours at —150°C and 16-mTorr).



Ultrasonic motors (USM) advantages

o Low speed and direct drive

o Order of magnitude higher torque density
than electromagnetic motors

o Unigue configurations: Pancake as well as
annular shape for electronic packaging

o Lower cost, easy to miniaturize and to mass
produce

o Inherently backdrivable (self braking)

o Not affected by magnetic field or radiation

Traveling Wave




| Inear motor

Configuration of a A step in the translation of the slider inside the channel that
flextensional piezoelectric  makes up the motor.
inch-worm motor.

The fabricated piezoelectric inch-
worm motor.




Piezo-Barth Motor
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Ultrasonic/Sonic Driller/Corer (USDC)
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Wireline drill = reaching great depth

Conventional Approach Wireline Approach

Drill

segments Plley

Borehole
Anchoring \ E

Rotary-hammer for efficient, dry drilling

* Piezoelectric actuator — hammers the bit and provides effective
fracturing mechanism

* Electrical motors - provides cuttings removal via rotation, linear
feed for weight on bit control, and anchoring
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Field test (joint with Honeybee Robotics)
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Beltless conveyer using Surface Acoustic Wave (SAW)

Wave propagating
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iISONAR - Acoustic analyzer of icy sub-surfaces of

cold bodies in the solar system

* An ISONAR is being proposed as an analyzer for

exploring Europa’s subsurface as well as the
investigation of Titan lakes’ architecture.

A sonar probe emits acoustic waves, which are
reflected from discontinuities and subsurface layer
interfaces depending on the transmitted power and
acoustic properties.

» The emitted waves are reflected by interfaces

where contrast in acoustic impedance (sound

speed times the density) occurs.
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———— Wireless Acoustic System (WACS) for
(o8, lander) communication through thick ice

T =4
i
: Ice surface Lander
Ice ;
: Surface asset
v
Transceiver N-1 S
e Acoustic link ﬂ
e Comm. control Acoustic _ S Wielss
* Drive electronics transceiver \ o / Transceivers 1 AcoAucsSticSystem
* Power = -
mm.,‘ <" ]
? I ¥
v Directivity of the
Transceiver N transmitted acoustic
» Acoustic link wave from a single
e Comm. control transducer
* Drive electronics
P Refrozen
ower Transmitted acoustic field weler

column

Cordless
hydrothermal
melting drill

T from a transducer array

i Penetration
v Vehicle
Penetrator with stack
of deployable

transceivers

/—\_/\
Ocean



l'\':-w-v Biologically Inspired
= Electroactive Polymer (EAP) Intelligent Robots

Tagacy e Nandostractive [ raduston Sories

N Mndulsaitn fosiaha Suie Actuators as Artificial Muscles { BIOMIMETICS

Biologically Inspired Technologies

Reality, Potentlal, and Challenges
Volume 4 SECOND EDITION

Automation, Minlature Robotics and
Sensars for Nondestructive Evaluation
and Testing

e e

Yoseph Bar-Cohen
Editor

Enrren ny
Yoseph Bar-Cohen

L 5
” I i

2000 15t Ed. (2001)
2nd Ed. (2004)

@ merssacs

2005

BOMMETICS r

SERES

Edited by WWILEY-VCH
Yoseph Bar-Cohen and Kris Zacny

HIGH TEMPERATURE
MATERIALS
and MECHANISMS

i r“ . v
Low Temperature
- Materials and
. Mechanisms

Drilling in Extreme
Environments

Penetration and Sampling on Earth and other Planets

. x Edited by
i o ¥
Bar-O Yoseph Bar-Cohen

OSts=,

2009 2009 2011 2014

http://ndeaa.jpl.nasa.gov/nasa-nde/yosi/yosi-books.htm



Acknowledgement

Some of the research reported in this presentation was conducted at the Jet
Propulsion Laboratory (JPL), California Institute of Technology, under a
contract with the National Aeronautics and Space Administration (NASA).



